cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-59 of 59 results.

A375503 Decimal expansion of the absolute value of zeta'(3/2), first derivative of the Riemann zeta function at s=3/2.

Original entry on oeis.org

3, 9, 3, 2, 2, 3, 9, 7, 3, 7, 4, 3, 1, 1, 0, 1, 5, 1, 0, 7, 0, 6, 3, 8, 8, 5, 7, 8, 4, 0, 6, 0, 1, 5, 2, 0, 2, 6, 9, 2, 7, 4, 3, 5, 5, 4, 8, 9, 2, 5, 7, 7, 2, 6, 1, 5, 4, 4, 6, 5, 9, 9, 4, 2, 5, 5, 4, 6, 6, 3, 6, 4, 2, 7, 7, 3, 1, 6, 7, 5, 7, 7, 8, 6, 3, 5, 9, 3, 9, 2, 8, 5, 8, 0, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 18 2024

Keywords

Examples

			zeta'(3/2) = -3.93223973743110151070638857840601520269274355489257...
		

Crossrefs

Cf. A073002 (at s=2), A244115 (s=3).

Programs

  • Maple
    Zeta(1,3/2); evalf(%) ;
  • Mathematica
    RealDigits[Zeta'[3/2], 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)

A383224 Decimal expansion Sum_{p primes} log(p)^2*p^2/(p^2-1)^2.

Original entry on oeis.org

8, 8, 4, 4, 8, 1, 8, 3, 3, 9, 6, 3, 5, 2, 3, 8, 8, 5, 1, 9, 6, 5, 3, 6, 1, 5, 3, 8, 7, 0, 6, 5, 1, 1, 6, 8, 5, 8, 8, 6, 6, 7, 3, 3, 2, 6, 3, 8, 7, 1, 1, 3, 3, 5, 1, 8, 1, 8, 3, 9, 2, 8, 6, 5, 7, 7, 8, 6, 0, 4, 5, 7, 1, 6, 5, 2, 7, 8, 8, 6, 3, 4, 3, 1, 2, 9, 5, 1, 0, 2, 2, 9, 5, 2, 4, 5, 2, 5, 4, 7, 0, 5, 6, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Apr 27 2025

Keywords

Examples

			0.8844818339635238851965361...
		

Crossrefs

Cf. A345364.

Programs

  • Maple
    Zeta(2,2)/Zeta(2) -Zeta(1,2)^2/Zeta(2)^2 ; evalf(%) ; # R. J. Mathar, May 07 2025
  • Mathematica
    RealDigits[(6 (-6 Zeta'[2]^2 + Pi^2 Zeta''[2]))/Pi^4, 10, 105][[1]]
  • PARI
    /* Procedure by Bill Allombert */
    default(realprecision, 105);
    SumEulerLog(f,s=1,a=2,d=1)=
    {
      my(p=variable(f));
      if(type(d)!="t_INT",error("incorrect type in SumEulerLog"));
      if (d<0,
        d=-d;
        for(i=1,d, f=deriv(f)*p);
        (-1)^d*intnum(t=1,[oo,log(2)*s],(t-1)^(d-1)*sumeulerrat(f,t*s,a))/gamma(d)
        ,d==0,
        sumeulerrat(f,s,a)
        ,d>0,
        my(S=0,v);
        my(prec=getlocalbitprec());
        f=subst(f,'p,1/p)+O(p^prec);
        for(i=1,d, f=intformal(f/p));
        v = valuation(f,p);
        f = truncate(f);
        for(i=v,prec/(v-1),
         S += polcoef(f,i)*derivnum(t=1,sumeulerrat(1/p,t*i*s,a),d));
        (-1)^d*S);
    }
    SumEulerLog(p^2/(p^2-1)^2,,,2)

Formula

Equals 6*(Pi^2*zeta''(2)-6*zeta'(2)^2)/Pi^4.
Equals 6*(Pi^2*zeta''(2)-6*(zeta[2]*(gamma + log(2*Pi) - 12*log(A)))^2)/Pi^4 where A is Glaisher-Kinkelin constant A074962.
Equals zeta''(2)/zeta(2)-zeta'(2)^2/zeta(2)^2 see A201994, A073002 and A013661.

A335007 Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 2, 9, 4, 3, 5, 3, 3, 1, 5, 9, 9, 2, 1, 3, 1, 3, 3, 4, 0, 1, 2, 7, 5, 2, 9, 0, 0, 2, 0, 4, 2, 6, 4, 8, 6, 6, 8, 9, 1, 2, 8, 3, 2, 3, 3, 4, 9, 3, 7, 0, 9, 1, 5, 6, 7, 2, 7, 9, 2, 9, 1, 9, 0, 6, 4, 5, 5, 7, 0, 0, 0, 8, 2, 8, 8, 8, 1, 0, 5, 5, 5, 4, 4, 9, 6, 2
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.2943533159921313340127529002042648668912832334937...
		

Crossrefs

Cf. A001620 (gamma), A013661 (zeta(2)), A034444, A064608, A073002 (-zeta'(2)), A147533, A335006.

Programs

  • Mathematica
    RealDigits[2*EulerGamma - 2*Zeta'[2]/Zeta[2] - 1, 10, 100][[1]]
  • PARI
    2*Euler - 2*zeta'(2)/zeta(2) - 1 \\ Michel Marcus, May 19 2020

Formula

Equals lim_{k->oo} ((zeta(2)/k)*A064608(k) - log(k)) where A064608 is the partial sums of the number of unitary divisors (A034444).
Equals 2*A001620 + 2*A073002/A013661 - 1 = 2*A335006 - 1.

A343919 Decimal expansion of Sum_{k>=1} log(k+1/2)/k^2 .

Original entry on oeis.org

1, 4, 3, 5, 0, 6, 2, 4, 8, 9, 3, 0, 4, 8, 5, 6, 7, 0, 0, 4, 0, 2, 6, 8, 2, 1, 7, 2, 5, 2, 7, 1, 6, 3, 6, 5, 4, 6, 9, 3, 1, 4, 0, 3, 2, 9, 6, 9, 5, 0, 8, 9, 9, 3, 7, 2, 8
Offset: 1

Views

Author

R. J. Mathar, May 04 2021

Keywords

Examples

			1.435062...
		

Crossrefs

Cf. A073002 (eps=0).

Programs

Formula

Sum_{k >=1 } log(k+eps)/k^2 = -Zeta'(2) - Sum_{i=1} (-eps)^i *Zeta(i+2)/i at eps=1/2, weighted sum over Riemann-Zeta.

A349522 Decimal expansion of Sum_{k>=2} 1/(k*log(k))^2.

Original entry on oeis.org

6, 9, 2, 6, 0, 5, 8, 1, 4, 6, 7, 4, 2, 4, 9, 3, 2, 7, 5, 1, 3, 8, 6, 3, 9, 4, 8, 8, 6, 1, 9, 5, 6, 3, 0, 5, 4, 3, 5, 9, 2, 1, 7, 3, 3, 4, 9, 5, 1, 7, 2, 4, 9, 4, 3, 7, 5, 3, 9, 9, 0, 7, 6, 3, 3, 7, 2, 3, 8, 5, 5, 9, 9, 2, 1, 2, 9, 2, 6, 6, 8, 2, 1, 7, 1
Offset: 0

Views

Author

Bernard Schott, Nov 20 2021

Keywords

Comments

Theorem: Bertrand series Sum_{n>=2} 1/(n^q*log(n)^r) is convergent if q > 1.
Application for q = 2 with A201994 (r=-2), A073002 (r=-1), A013661 (r=0), A168218 (r=1), this sequence (r=2).

Examples

			0.6926058...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=2} 1/(k*log(k))^2.
Equals Integral_{x>=2, y>=2} (zeta(x + y - 2) - 1) dx dy. - Amiram Eldar, Nov 21 2021

A349641 Decimal expansion of the Sum_{k>=2} 1/(k^3*log(k)).

Original entry on oeis.org

2, 3, 7, 9, 9, 6, 1, 0, 0, 1, 9, 8, 6, 2, 1, 3, 0, 1, 9, 9, 2, 8, 7, 9, 0, 7, 8, 3, 1, 3, 3, 1, 9, 0, 6, 9, 4, 9, 1, 7, 3, 5, 0, 7, 2, 6, 1, 3, 2, 4, 3, 7, 9, 4, 5, 5, 6, 9, 7, 5, 7, 7, 0, 2, 7, 8, 3, 0, 0, 8, 8, 8, 3, 6, 3, 0, 8, 0, 4, 0, 0, 4, 8, 6, 3, 9, 0, 0, 2, 8, 1, 6, 2, 0, 5, 4, 1, 8, 5
Offset: 0

Views

Author

Jianing Song, Nov 24 2021

Keywords

Examples

			Sum_{k>=2} 1/(k^3*log(k)) = 0.23799610019862130199...
		

Crossrefs

Similar sequences: A013661, A002117, A073002, A244115, A168218.

Programs

  • Mathematica
    (* following Jean-François Alcover's Mathematica program for A168218 *) digits = 110; NSum[ 1/(n^3*Log[n]), {n, 2, Infinity}, NSumTerms -> 500000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 12}}] // RealDigits[#, 10, digits] & // First
  • PARI
    intnum(x=3, [oo, log(3)], zeta(x)-1) \\ following Charles R Greathouse IV's program for A168218
    
  • PARI
    sumpos(k=2, 1/(k^3*log(k))) \\ Michel Marcus, Nov 27 2021

Formula

Equals Integral_{s=3..oo} (zeta(s) - 1) ds.

A349770 a(n) = Sum_{d|n} usigma(d) * usigma(n/d).

Original entry on oeis.org

1, 6, 8, 19, 12, 48, 16, 48, 36, 72, 24, 152, 28, 96, 96, 113, 36, 216, 40, 228, 128, 144, 48, 384, 88, 168, 136, 304, 60, 576, 64, 258, 192, 216, 192, 684, 76, 240, 224, 576, 84, 768, 88, 456, 432, 288, 96, 904, 164, 528, 288, 532, 108, 816, 288, 768, 320, 360, 120, 1824
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 29 2021

Keywords

Comments

Dirichlet convolution of A034448 with itself.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a[n_] := Sum[usigma[d] usigma[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]

Formula

Dirichlet g.f.: ( zeta(s) * zeta(s-1) / zeta(2*s-1) )^2.
Multiplicative with a(p^e) = e * (p^e + 1) + (p+1) * (p^e - 1)/(p-1). - Amiram Eldar, Nov 29 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / zeta(3)^2 * (Pi^2 * log(n)/72 + gamma * Pi^2/36 - Pi^2/144 + zeta'(2)/6 - Pi^2 * zeta'(3)/(18*zeta(3))), where zeta(3) = A002117, zeta'(2) = -A073002, zeta'(3) = -A244115 and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2021

A369885 Decimal expansion of Sum_{k>=1} log(k+1)/k^2.

Original entry on oeis.org

1, 8, 0, 0, 7, 5, 5, 0, 5, 6, 0, 0, 5, 2, 8, 2, 9, 9, 1, 4, 9, 6, 6, 0, 6, 0, 1, 4, 2, 1, 4, 8, 4, 3, 1, 8, 1, 4, 4, 5, 6, 6, 3, 7, 8, 3, 8, 1, 8, 4, 1, 7, 9, 3, 0, 2, 7, 1, 8, 6, 6, 7, 5, 9, 1, 7, 2, 9, 9, 8, 8, 3, 1, 7, 6, 3, 8, 6, 3, 1, 1, 8, 0, 5, 1, 5, 9, 2, 9, 8, 4, 3, 7, 8, 8, 9, 2, 4, 3, 8, 1, 0, 9, 8, 9
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			1.80075505600528299149660601421484318144566378381841...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(k+1)*Zeta(k)/(k-2), k = 3 .. infinity) - Zeta(1, 2), 120)
  • Mathematica
    RealDigits[NIntegrate[HarmonicNumber[x]/x^2, {x, 1, Infinity}, WorkingPrecision -> 120]][[1]]
  • PARI
    sumpos(k = 1, log(k+1)/k^2)
    
  • PARI
    sumalt(k = 3, (-1)^(k+1) * zeta(k)/(k-2)) - zeta'(2)

Formula

Equals Integral_{x>=1} H(x)/x^2 dx, where H(x) is the harmonic number for real variable x (Shamos, 2011).
Equals -zeta'(2) + Sum_{k>=3} (-1)^(k+1)*zeta(k)/(k-2) (Mező, 2014).
Equals Sum_{k>=1} lambda(k)*H(k)/(k^2*k!) + 1 + zeta(3) - gamma * zeta(2), where lambda(k) = abs(A006232(k)/A006233(k)) is the n-th non-alternating Cauchy number, H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma is Euler's constant (A001620) (Candelpergher and Coppo, 2012). - Amiram Eldar, Mar 18 2024

A386738 Decimal expansion of Integral_{x=0..1} {1/x}^4 dx, where {} denotes fractional part.

Original entry on oeis.org

1, 4, 5, 5, 3, 2, 8, 9, 4, 8, 7, 9, 1, 3, 2, 8, 7, 1, 9, 7, 7, 4, 5, 5, 9, 6, 4, 9, 4, 7, 2, 2, 4, 4, 0, 1, 6, 6, 5, 6, 6, 6, 4, 6, 3, 7, 9, 5, 1, 4, 2, 5, 5, 0, 1, 6, 6, 9, 0, 0, 5, 9, 5, 7, 3, 2, 9, 9, 9, 1, 4, 2, 9, 3, 8, 3, 6, 0, 2, 9, 7, 5, 2, 7, 9, 2, 6, 6, 1, 2, 4, 9, 9, 1, 2, 5, 5, 9, 2, 8, 2, 3, 8, 5, 9
Offset: 0

Views

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.14553289487913287197745596494722440166566646379514...
		

Crossrefs

Cf. A153810 (m=1), A345208 (m=2), A345208 (m=3), this constant (m=4).

Programs

  • Mathematica
    RealDigits[Log[2*Pi] - 2*EulerGamma - 1/3 + (Zeta[3]/2 + Zeta'[2])/Zeta[2], 10, 120][[1]]
  • PARI
    log(2*Pi) - 2*Euler - 1/3 + (zeta(3)/2 + zeta'(2))/zeta(2)

Formula

Equals log(2*Pi) - 2*gamma - 1/3 + 3*zeta(3)/Pi^2 + 6*zeta'(2)/Pi^2.
In general, for m >= 2, Integral_{x=0..1} {1/x}^m dx = log(2*Pi) - m*gamma/2 - 1/(m-1) - Sum_{k=1..floor((m-2)/2)} (-1)^k * (m!/(m-2*k-1)!) * zeta(2*k+1) / (2^(2*k+1) * Pi^(2*k)) + 2 * Sum_{k=1..floor((m-1)/2)} (-1)^(k-1) * (m!/(m-2*k)!) * zeta'(2*k) / (2*Pi)^(2*k).
Previous Showing 51-59 of 59 results.