cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A073810 Number of common divisors of sigma(2,n) and sigma(3,n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 2, 2, 3, 2, 2, 1, 2, 8, 3, 2, 2, 4, 1, 2, 6, 2, 2, 3, 2, 2, 3, 2, 3, 1, 2, 4, 3, 8, 2, 3, 2, 4, 4, 2, 2, 4, 2, 2, 3, 4, 2, 6, 3, 4, 6, 4, 2, 12, 2, 2, 2, 2, 3, 3, 2, 8, 3, 3, 2, 4, 2, 2, 4, 4, 3, 3, 2, 4, 3, 2, 2, 6, 6, 2, 6, 4, 2, 4, 3, 4, 3, 2, 3, 8, 2, 2, 2, 1, 2, 3, 2, 4
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			n=10: sigma(2,10)=130, sigma(3,10)=1134; Intersection[{1,2,5,10,13,26,65,130}, {1,2,3,6,7,9,14,18,21,27,42,54,63,81, 126,162,189,378,567,1134}]={1,2}, so a(10)=2.
		

Crossrefs

Programs

  • Mathematica
    g1[x_] := Divisors[DivisorSigma[2, x]] g2[x_] := Divisors[DivisorSigma[3, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
    a[n_] := DivisorSigma[0, GCD[DivisorSigma[2, n], DivisorSigma[3, n]]]; Array[a, 100] (* Amiram Eldar, Oct 18 2019 *)

Formula

a(n) = Card[Intersection[D[A001157(n)], D[A001158(n)]]].

A073811 Number of common divisors of n and phi(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 2, 1, 5, 1, 2, 1, 6, 1, 2, 2, 4, 1, 4, 1, 3, 2, 2, 1, 5, 2, 4, 1, 3, 1, 6, 2, 4, 2, 2, 1, 3, 1, 2, 3, 6, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 2, 3, 1, 4, 1, 5, 4, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 1, 4, 2, 6, 1, 2, 1, 4, 2
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

Where records occur: 1, 4, 8, 16, 32, 36, 72, 108, 144, 216, 432, 648, 864, ... - David A. Corneth, Oct 21 2017

Examples

			For n = 24: phi(n) = 8, Intersection[{1,2,3,4,6,8,12,24},{1,2,4,8}] = {1,2,4,8}, so a(24) = 4.
		

Crossrefs

Programs

  • Mathematica
    g1[x_] := Divisors[x] g2[x_] := Divisors[EulerPhi[x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
    Table[Length[Intersection[Divisors[n],Divisors[EulerPhi[n]]]],{n,110}] (* Harvey P. Dale, Oct 03 2013 *)
    a[n_] := DivisorSigma[0, GCD[n, EulerPhi[n]]]; Array[a, 100] (* Amiram Eldar, Jul 01 2022 *)
  • PARI
    A073811(n) = sumdiv(eulerphi(n),d,!(n%d)); \\ Antti Karttunen, Oct 21 2017
    
  • PARI
    a(n) = numdiv(gcd(eulerphi(n), n)) \\ David A. Corneth, Oct 21 2017
    
  • Scheme
    ;; Implemented literally (naively) after the description. Either:
    (define (A073811 n) (length (filter (lambda (d) (zero? (modulo n d))) (divisors (A000010 n)))))
    ;; Or:
    (define (A073811 n) (let ((phn (A000010 n))) (length (filter (lambda (d) (zero? (modulo phn d))) (divisors n)))))
    (define (divisors n) (cons 1 (proper-divisors n))) ;; This can be also memoized with definec.
    (define (proper-divisors n) (let loop ((k n) (divs (list))) (cond ((= 1 k) divs) ((zero? (modulo n k)) (loop (- k 1) (cons k divs))) (else (loop (- k 1) divs)))))
    ;; Antti Karttunen, Oct 21 2017

Formula

a(n) = Card[Intersection[D[n], D[A000010(n)]]].
a(n) = Sum_{d|n, d|A000010(n)} 1. - Antti Karttunen, Oct 21 2017
a(n) = A000005(A009195(n)). - Antti Karttunen, Oct 21 2017, after David A. Corneth's PARI-program.

A073806 Number of divisors of sum of square of divisors.

Original entry on oeis.org

1, 2, 4, 4, 4, 6, 6, 4, 4, 8, 4, 16, 8, 8, 12, 4, 8, 8, 4, 16, 12, 8, 8, 12, 8, 12, 12, 24, 4, 18, 8, 16, 12, 12, 18, 12, 8, 8, 18, 16, 6, 15, 12, 16, 12, 12, 16, 16, 8, 16, 18, 32, 8, 18, 12, 16, 12, 8, 4, 48, 4, 16, 24, 4, 24, 18, 8, 32, 18, 24, 4, 16, 16, 12, 32, 16, 18, 24, 4, 16, 6
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			n = 10: D = {1,2,5,10}, sigma(2,10) = 1 + 4 + 25 + 100 = 130, D(130) = {1,2,5,10,13,26,65,130}, so a(10) = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, DivisorSigma[2, n]]; Array[a, 81] (* Amiram Eldar, Aug 01 2019 *)

Formula

a(n) = A000005(A001157(n)) = d(sigma(2, n)).

A073807 Number of divisors of sum of cube of divisors.

Original entry on oeis.org

1, 3, 6, 2, 12, 18, 8, 12, 2, 20, 18, 12, 8, 24, 36, 4, 32, 6, 24, 24, 24, 30, 36, 72, 4, 24, 32, 16, 24, 60, 36, 16, 60, 48, 60, 4, 16, 72, 24, 80, 24, 72, 24, 36, 24, 60, 60, 24, 8, 12, 96, 16, 20, 96, 80, 96, 50, 40, 72, 72, 16, 108, 16, 8, 54, 100, 12, 64, 108, 100, 32, 24
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

a(n) = 2 for n in A063783. - Robert Israel, Jul 12 2023

Examples

			For n=10: D={1,2,5,10}, 1+8+125+1000=1134, divisors(1134)={1,2,3,6,7,9,14,18,21,27,42,54,63,81,126,162,189,378,567,1134} so a(10)=20.
		

Crossrefs

Programs

  • Maple
    f:= n -> numtheory:-tau(numtheory:-sigma[3](n)):
    map(f, [$1..100]); # Robert Israel, Jul 12 2023
  • Mathematica
    Table[DivisorSigma[0,DivisorSigma[3,n]],{n,80}] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    a(n) = numdiv(sigma(n, 3)); \\ Michel Marcus, Jul 13 2023

Formula

a(n) = A000005(A001158(n)).

A073812 Number of common divisors of sigma(n) and phi(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 4, 4, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 4, 2, 3, 2, 4, 2, 1, 3, 2, 8, 1, 2, 4, 4, 2, 2, 6, 2, 3, 4, 2, 2, 3, 2, 1, 4, 2, 2, 4, 4, 8, 3, 2, 2, 4, 2, 4, 3, 1, 6, 3, 2, 2, 3, 8, 2, 2, 2, 4, 3, 3, 6, 8, 2, 2, 1, 2, 2, 4, 3, 4, 4, 6, 2, 4, 4, 3, 3, 2, 8, 3, 2, 2, 6, 1, 2, 4, 2, 4
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			n=36: sigma(36)=91; phi(36)=12; Intersection[{1,7,13,91},{1,2,3,4,6,12}]={1}, so a(36)=1.
		

Crossrefs

Programs

  • Mathematica
    g1[x_] := Divisors[DivisorSigma[1, x]] g2[x_] := Divisors[EulerPhi[x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
    a[n_] := DivisorSigma[0, GCD[DivisorSigma[1, n], EulerPhi[n]]]; Array[a, 100] (* Amiram Eldar, Oct 18 2019 *)

Formula

a(n) = Card[Intersection[D[A000203(n)], D[A000010(n)]]].

A378267 Numbers k that have a record number of common divisors with sigma(k).

Original entry on oeis.org

1, 6, 24, 120, 672, 4320, 26208, 30240, 524160, 2178540, 8714160, 8910720, 17428320, 45532800, 132723360, 208565280, 240589440, 470564640, 668304000, 1307124000, 5228496000, 10805558400, 14182439040, 31998395520, 159991977600
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2024

Keywords

Comments

Indices of records in A073802.
This sequence is infinite since A073802 is unbounded. For example, for any odd number m we have A073802(2^(m-1)*(2^m-1)) >= A000005(m) and the number of divisors of odd numbers is unbounded.
The corresponding record values are 1, 4, 6, 16, 24, 40, 60, 96, 144, 216, 240, 336, ... .
a(26) <= 799959888000.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{d, dmax = 0, s = {}}, Do[d = DivisorSigma[0, GCD[k, DivisorSigma[1, k]]]; If[d > dmax, dmax = d; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
  • PARI
    lista(kmax) = {my(d, dmax = 0); for(k = 1, kmax, d = numdiv(gcd(k, sigma(k))); if(d > dmax, dmax = d; print1(k, ", ")));}
Previous Showing 11-16 of 16 results.