cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A086122 Primes of the form (5^k-1)/4.

Original entry on oeis.org

31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531, 35032461608120426773093239582247903282006548546912894293926707097244777067146515037165954709053039550781
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Comments

Corresponding exponents k are listed in A004061. - Alexander Adamchuk, Jan 23 2007

Crossrefs

Programs

  • Mathematica
    Do[f=(5^n-1)/4;If[PrimeQ[f],Print[{n,f}]],{n,1,1000}] (* Alexander Adamchuk, Jan 23 2007 *)
    Select[(5^Range[300]-1)/4,PrimeQ] (* Harvey P. Dale, Dec 11 2016 *)

Formula

a(n) = (5^A004061(n) - 1)/4 = A003463[ A004061(n) ]. - Alexander Adamchuk, Jan 23 2007
A003464 INTERSECT A000040.

Extensions

More terms from Alexander Adamchuk, Jan 23 2007

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).
Previous Showing 11-12 of 12 results.