cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A263561 Odd numbers n such that for every k >= 1, n*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

Original entry on oeis.org

42270067, 97579567, 340716433, 721933559, 890948323, 1726122269, 1865978047, 1889699677, 2362339121, 3185721853, 3637126963, 4668508603, 5064217117, 5569622789, 7480754459, 7701804269, 8594194301, 9005098303, 9180863669, 9939496717, 9979211051
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 21 2015

Keywords

Comments

What is the smallest term of this sequence that belongs to A076335? Is it the smallest Brier number?
This sequence contains only numbers of the form 30*k + 7, 30*k + 11, 30*k + 13, 30*k + 29.

Crossrefs

Subsequence of A101036.
A263562 gives the primes.

Formula

a(n) = a(n-96) + 39832304070 for n > 96.

A291360 Prime divisors of 2^720 - 1.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 181, 241, 257, 331, 433, 577, 631, 673, 1321, 23311, 38737, 54001, 61681, 8369281, 18837001, 29247661, 394783681, 4278255361, 4562284561, 46908728641, 168692292721, 487824887233, 469775495062434961, 750016890283777055704738227247474485366338380663681
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 23 2017

Keywords

Comments

It is possible to find an odd positive integer k and a set S = {p(1), ..., p(s)} containing only primes which appeared in the sequence such that for any nonnegative integer n, k*2^n + 1 == 0 (mod p(i)) and k*2^n - 1 == 0 (mod p(j)) for some p(i) and some p(j) from the set S.

Crossrefs

Cf. A076335, A154700. Supersequence of A269326.

Programs

  • Magma
    PrimeDivisors(2^720-1);
    
  • Mathematica
    Select[Divisors[2^720-1], PrimeQ]
  • PARI
    forprime(p=1, , if(Mod(2, p)^720==1, print1(p, ", "))) \\ Felix Fröhlich, Aug 23 2017

A364412 Odd numbers m such that for every k >= 1, m*2^k - 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.

Original entry on oeis.org

144323411864333, 175321252530209, 190779128601685, 316031956469111, 389882208980861, 450590081221877, 2420018284798363, 2715458757443051, 3161282469971861, 3366332338600025, 3643757921262355, 4380746955320089, 4409682697067321, 5089175909950511, 5281690092088615
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 23 2023

Keywords

Crossrefs

Formula

For n > 34560, a(n) = a(n-34560) + 10014447295554878022.

A237880 Conjectured number of distinct integers < 10^n that are Sierpiński or Riesel or simultaneously Sierpiński and Riesel numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 16, 134, 1345, 13420
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 14 2014

Keywords

Crossrefs

Formula

a(n) = A236320(n) + A236321(n) for n <= 9.

Extensions

Definition clarified by Arkadiusz Wesolowski, Jun 05 2021

A269326 Let k be a number which is simultaneously Sierpiński and Riesel, and let P be a set of primes which cover every number of the form k*2^m + 1 and of the form k*2^m - 1 with m >= 1. Sequence shows elements of the set P which has the property that the product of its primes is as small as it is possible.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 23 2016

Keywords

Crossrefs

Programs

  • Magma
    PrimeDivisors((2^36-1)*(2^48-1)*(2^60-1))[1..18];

A281907 Numbers congruent to 47867742232066880047611079 modulo 66483034025018711639862527490.

Original entry on oeis.org

47867742232066880047611079, 66530901767250778519910138569, 133013935792269490159772666059, 199496969817288201799635193549, 265980003842306913439497721039, 332463037867325625079360248529, 398946071892344336719222776019, 465429105917363048359085303509
Offset: 1

Views

Author

Felix Fröhlich, Feb 01 2017

Keywords

Comments

The terms of this sequence cannot be written as +-p^a +-q^b with p, q prime and a, b nonnegative integers for any possible choice of signs (cf. Theorem in Sun, 2000).
47867742232066880047611079 is a Brier number (A076335). - Jeppe Stig Nielsen, Sep 16 2020

Crossrefs

Cf. A153352.

Programs

  • Mathematica
    Table[66483034025018711639862527490 n + 47867742232066880047611079, {n, 0, 7}] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    a(n) = 66483034025018711639862527490*n+47867742232066880047611079

Formula

a(n) = 66483034025018711639862527490*n + 47867742232066880047611079.
Previous Showing 21-26 of 26 results.