cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A144797 Numbers k such that 2*k^2 + 17 is a square.

Original entry on oeis.org

2, 4, 16, 26, 94, 152, 548, 886, 3194, 5164, 18616, 30098, 108502, 175424, 632396, 1022446, 3685874, 5959252, 21482848, 34733066, 125211214, 202439144, 729784436, 1179901798, 4253495402, 6876971644, 24791187976, 40081928066, 144493632454, 233614596752
Offset: 1

Views

Author

Richard Choulet, Sep 21 2008

Keywords

Examples

			a(1)=2 because 2*4 + 17 = 25 = 5^2.
		

Crossrefs

Cf. A133301.

Programs

  • Mathematica
    Select[Range[6000000],IntegerQ[Sqrt[2#^2+17]]&] (* Harvey P. Dale, Aug 18 2012 *)
    LinearRecurrence[{0, 6, 0, -1}, 2{1, 2, 8, 13}, 30] (* Robert G. Wilson v, Dec 02 2014 *)
  • PARI
    Vec(2*x*(1+x)*(1+x+x^2) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ Colin Barker, Oct 20 2014

Formula

G.f.: 2*x*(1+x)*(1+x+x^2) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Nov 27 2011
a(n) = 2*A077241(n-1). - R. J. Mathar, Nov 27 2011
a(n) = 6*a(n-2) - a(n-4). - Colin Barker, Oct 20 2014

Extensions

Corrected by R. J. Mathar, Nov 27 2011
Editing and more terms from Colin Barker, Oct 20 2014

A305292 Numbers k such that k-1 is a square and k+1 is a triangular number.

Original entry on oeis.org

2, 5, 65, 170, 2210, 5777, 75077, 196250, 2550410, 6666725, 86638865, 226472402, 2943171002, 7693394945, 99981175205, 261348955730, 3396416785970, 8878171099877, 115378189547777, 301596468440090, 3919462027838450, 10245401755863185, 133146330756959525
Offset: 1

Views

Author

Bruno Berselli, Jun 11 2018

Keywords

Comments

It is easy to prove that there are no numbers k such that k-1 is a triangular number and k+1 is a square.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {2, 5, 65, 170, 2210}, 25]
  • PARI
    Vec(x*(2 + 3*x - 8*x^2 + 3*x^3 + 2*x^4)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30)) \\ Colin Barker, Jun 14 2018

Formula

G.f.: x*(2 + 3*x - 8*x^2 + 3*x^3 + 2*x^4)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
a(n) = a(-n-1) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) = 34*a(n-2) - a(n-4) + 2.
a(n) = (-2 + (13*sqrt(2) + 7*(-1)^n)*(1 + sqrt(2))^(2*n+1) - (13*sqrt(2) - 7* (-1)^n)*(1 - sqrt(2))^(2*n+1))/32.
a(n) = A214838(n) - 1.
a(n) = A077241(n-1)^2 + 1.

A165356 Primes p such that p + (p^2 - 1)/8 is a perfect square.

Original entry on oeis.org

3, 19, 211, 1249, 4513, 1445953, 30381331, 286292179, 2959257735801707821729
Offset: 1

Views

Author

Vincenzo Librandi, Sep 16 2009

Keywords

Comments

The primes p = A000040(j) at j= 2, 8, 47, 204, 612, 110340 etc. generating the squares 2^2, 8^2, 76^2, 443^2 etc.
From the ansatz p + (p^2 - 1)/8 = s^2 we conclude p = -4 + sqrt(17 + 8*s^2), so all s are members of A077241.

Examples

			For p=3, p + (p^2-1)/8 = 4 = 2^2. For p=19, p + (p^2-1)/8 = 64 = 8^2. For p=211, p + (p^2-1)/8 = 5776 = 76^2.
		

Crossrefs

Programs

  • Maple
    A077241 := proc(n) if n <= 3 then op(n+1,[1,2,8,13]) ; else 6*procname(n-2)-procname(n-4) ; fi; end:
    for n from 0 do s := A077241(n) ; p := sqrt(17+8*s^2)-4 ; if isprime(p) then printf("%d,\n",p) ; fi; od: # R. J. Mathar, Sep 21 2009
    a := proc (n) if isprime(n) = true and type(sqrt(n+(1/8)*n^2-1/8), integer) = true then n else end if end proc; seq(a(n), n = 1 .. 10000000); # Emeric Deutsch, Sep 21 2009
  • Mathematica
    p = 2; lst = {}; While[p < 10^12, If[ IntegerQ@ Sqrt[p + (p^2 - 1)/8], AppendTo[lst, p]; Print@p]; p = NextPrime@p] (* Robert G. Wilson v, Sep 30 2009 *)

Extensions

6 more terms from R. J. Mathar, Sep 21 2009
Previous Showing 11-13 of 13 results.