cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A300581 Expansion of Product_{k>=1} 1/(1 - 2^(k+1)*x^k).

Original entry on oeis.org

1, 4, 24, 112, 544, 2368, 10624, 44800, 190976, 791552, 3282944, 13414400, 54829056, 222117888, 899383296, 3625123840, 14601027584, 58659700736, 235555782656, 944552017920, 3786334535680, 15166305468416, 60736264994816, 243129089261568, 973133053952000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-2^(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = A065446 = 1/QPochhammer(1/2) = 3.46274661945506361...

A134135 Alternating row sums of triangle A134134.

Original entry on oeis.org

1, 1, 5, 15, 93, 551, 4129, 33607, 312929, 3179343, 35602881, 432201743, 5678740945, 80142780751, 1210609725905, 19481112885231, 332836223507793, 6016678424942063, 114746996449871761, 2302527084416470255
Offset: 1

Views

Author

Wolfdieter Lang Oct 12 2007

Keywords

Comments

Difference of numbers sum(product(j!^e(n,m,k,j),j=1..n),k=1..p(n,m)) related to odd and even part m partitions of n. Here e(n,m,k,j) is the exponent of j in the k-th m part partition of n and p(n,m)=A008284(n,m) is the number of partitions of n with m parts.

Crossrefs

Cf. A077365 (row sums of A134134).

Formula

a(n)=sum(A134134(n,m)*(-1)^(m-1),m=1..n),n>=1.

A158615 Expansion of Sum_{n>0} n*n!*x^n/(1-n!*x^n).

Original entry on oeis.org

1, 5, 19, 105, 601, 4445, 35281, 324897, 3266569, 36360065, 439084801, 5751188913, 80951270401, 1220673888257, 19615124183329, 334777645154817, 6046686277632001, 115243914079782593, 2311256907767808001
Offset: 1

Views

Author

Vladeta Jovovic, Mar 22 2009

Keywords

Comments

a(n) = Sum_{d|n} d*d!^(n/d).

Crossrefs

Programs

  • Maple
    nmax := 40: gf := add( taylor( n*n!*x^n/(1-n!*x^n),x=0,nmax+1),n=1..nmax ) : coeffs(convert(gf,polynom)) ; # R. J. Mathar, Mar 30 2009
  • Mathematica
    nmax=20; Rest[CoefficientList[Series[Sum[k*k!*x^k/(1-k!*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 19 2015 *)

Formula

a(n) ~ n * n!. - Vaclav Kotesovec, Dec 19 2015

Extensions

More terms from R. J. Mathar, Mar 30 2009

A160564 Sum of products of factorials of parts times the factorial of the number of parts in all integer partitions of n.

Original entry on oeis.org

1, 1, 4, 16, 80, 420, 2592, 17352, 132240, 1117200, 10559040, 110276352, 1268640000, 15923168640, 216767367936, 3178157607936, 49918919122944, 835744605027840, 14852897362759680, 279172076525153280, 5531978038112409600, 115241366146485749760
Offset: 0

Views

Author

Geoffrey Critzer, May 19 2009

Keywords

Comments

Take each Ferrers diagram of the partitions of n, label the cells within each row and then linearly order the rows.

Examples

			a(3) = 16 because the partitions of 3 can be so ordered in 16 ways: 3 (6); 2,1 (4); 1,1,1 (6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j)*i!^j, j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    p = Table[Map[Function[n, Apply[Times, n! ]], Partitions[i]], {i, 0, 20}]; q = Table[Map[Function[n, Length[n]! ], Partitions[i]], {i, 0, 20}]; Map[Function[n, Apply[Plus, n]], p*q]

A292318 Expansion of Product_{k>=1} ((1 + k!*x^k)/(1 - k!*x^k)).

Original entry on oeis.org

1, 2, 6, 22, 90, 434, 2442, 15874, 118722, 1009586, 9640866, 102243682, 1191949122, 15141785570, 208068223458, 3073613823778, 48554040330210, 816547584905186, 14562214993474914, 274463503469613538, 5450631032885614050, 113749623991878727394
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1 + k!*x^k)/(1 - k!*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 15 2017 *)

Formula

Convolution of A077365 and A265950.
a(n) ~ 2 * n! * (1 + 2/n + 6/n^2 + 28/n^3 + 162/n^4 + 1134/n^5 + 9368/n^6 + 89502/n^7 + 974338/n^8 + 11948360/n^9 + 163462518/n^10). - Vaclav Kotesovec, Sep 15 2017

A318247 a(n) = [x^n] Product_{k>=1} (1 + n!*x^k).

Original entry on oeis.org

1, 1, 2, 42, 600, 28920, 374285520, 128100273840, 131101518683520, 143354704247556480, 173401404266683545849388800, 2538767479410416957720411116800, 105287752487031026606448840363801600, 4510685217145833106538730603088118860800, 288804138719404983322786510403231912442931200
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[SeriesCoefficient[Product[(1+n!*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
Previous Showing 11-16 of 16 results.