cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A298642 Number of partitions of n^2 into distinct squares > 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 5, 2, 10, 4, 12, 12, 11, 19, 23, 43, 50, 55, 78, 120, 126, 234, 207, 407, 385, 701, 712, 1090, 1231, 1850, 2102, 3054, 3385, 4988, 5584, 7985, 9746, 12205, 15737, 18968, 25157, 30927, 39043, 47708, 61915, 74592, 99554
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2018

Keywords

Examples

			a(5) = 2 because we have [25] and [16, 9].
		

Crossrefs

Formula

a(n) = [x^(n^2)] Product_{k>=2} (1 + x^(k^2)).
a(n) = A280129(A000290(n)).

A334542 Numbers m such that m^2 = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 58, 85, 375, 666, 1968, 1998, 3578, 3665, 3891, 4658, 4995, 6675, 7735, 18434, 27475, 28784, 46692, 56763, 58896, 59577, 59949, 76965, 186633, 186673, 795848, 949968, 965667, 1339575, 1587616, 1929798, 2765388, 2989584, 3674195, 4763568, 5762784, 36741656, 58988961, 134369685, 188959392
Offset: 1

Views

Author

Scott R. Shannon, May 05 2020

Keywords

Examples

			58 is a term as p = 5*8 = 40 and 58^2 = 3364 = 40^2 + 42^2.
3891 is a term as p = 3*8*9*1 = 216 and 3891^2 = 15139881 = 216^2 + 3885^2.
		

Crossrefs

Subsequence of A052382 (zeroless numbers).

Programs

  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 - p^2); \\ Michel Marcus, May 06 2020

A334557 Numbers m such that m = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.

Original entry on oeis.org

1, 13, 41, 61, 125, 212, 281, 613, 1156, 1424, 2225, 3232, 3316, 4113, 11125, 11281, 11525, 12816, 14913, 16317, 16441, 19125, 21284, 21625, 24128, 25216, 27521, 31525, 53125, 56116, 61321, 65161, 71325, 82116, 82217, 83521, 84313, 111812, 113125, 113625, 115336, 115681, 117125, 118372
Offset: 1

Views

Author

Scott R. Shannon, May 06 2020

Keywords

Examples

			13 is a term as p = 1*3 = 3 and 13 = 3^2 + 2^2.
281 is a term as p = 2*8*1 = 16 and 281 = 16^2 + 5^2.
118372 is a term as p = 1*1*8*3*7*2 = 336 and 118372 = 336^2 + 74^2.
		

Crossrefs

Programs

  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && issquare(m - p^2); \\ Michel Marcus, May 06 2020

A334558 Numbers m such that m^2 + p^2 = k^2, with p > 0, where p = A007954(m) = the product of digits of m.

Original entry on oeis.org

429, 437, 598, 1938, 3584, 3875, 5576, 6864, 16758, 36828, 43778, 47775, 47859, 56637, 56672, 82928, 91798, 129584, 156782, 165688, 165838, 178857, 215985, 379488, 655578, 798847, 1881576, 2893337, 3918768, 4816872, 5439798, 5829795, 7558299, 9675288, 11943887
Offset: 1

Views

Author

Scott R. Shannon, May 06 2020

Keywords

Examples

			429 is a term as p = 4*2*9 = 72 and 429^2 + 72^2 = 189225 = 435^2.
16758 is a term as p = 1*6*7*5*8 = 1680 and 16758^2 + 1680^2 = 283652964 = 16842^2.
		

Crossrefs

Programs

  • PARI
    isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 + p^2); \\ Michel Marcus, May 06 2020

A281155 Expansion of (Sum_{k>=2} x^(k^2))^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 3, 0, 0, 1, 0, 6, 0, 0, 0, 3, 3, 0, 3, 0, 6, 0, 0, 3, 0, 3, 3, 6, 0, 0, 1, 6, 6, 0, 0, 0, 6, 0, 6, 6, 0, 3, 0, 6, 6, 0, 0, 6, 3, 3, 3, 6, 6, 0, 3, 0, 6, 1, 3, 12, 6, 0, 0, 6, 3, 6, 6, 0, 3, 0, 3, 15, 6, 0, 0, 6, 12, 0, 3, 3, 6, 6, 0, 12, 3, 0, 6, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 3 squares > 1.

Examples

			G.f. = x^12 + 3*x^17 + 3*x^22 + 3*x^24 + x^27 + 6*x^29 + 3*x^33 + 3*x^34 + 3*x^36 + ...
a(17) = 3 because we have [9, 4, 4], [4, 9, 4] and [4, 4, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[x^k^2, {k, 2, nmax}]^3, {x, 0, nmax}], x]
    CoefficientList[Series[(-1 - 2 x + EllipticTheta[3, 0, x])^3/8, {x, 0, 105}], x]

Formula

G.f.: (Sum_{k>=2} x^(k^2))^3.
G.f.: (1/8)*(-1 - 2*x + theta_3(0,x))^3, where theta_3 is the 3rd Jacobi theta function.

A303906 Expansion of Product_{k>=2} 1/(1 - x^(k*(k+1)/2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 3, 1, 0, 4, 2, 0, 5, 2, 1, 7, 3, 1, 8, 4, 2, 10, 6, 2, 13, 8, 3, 15, 10, 4, 20, 12, 6, 22, 16, 8, 28, 19, 10, 33, 25, 12, 40, 29, 16, 48, 36, 19, 55, 44, 26, 65, 53, 30, 76, 64, 38, 88, 75, 46, 106, 88, 56, 119, 105, 68, 141, 122, 80, 160
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

First differences of A007294.
Number of partitions of n into triangular numbers > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 - x^(k (k + 1)/2)), {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 75; CoefficientList[Series[1 + Sum[x^(j (j + 1)/2)/Product[(1 - x^(k (k + 1)/2)), {k, 2, j}], {j, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: 1 + Sum_{j>=2} x^(j*(j+1)/2)/Product_{k=2..j} (1 - x^(k*(k+1)/2)).
a(n) ~ exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2) * Zeta(3/2)^(5/3) / (2^(9/2) * sqrt(3) * Pi^(2/3) * n^(13/6)). - Vaclav Kotesovec, May 04 2018

A367116 a(0) = 1; for n >= 1, a(n) is the largest number m = Product_{j=1..k} (b(j)-1) where {b(1), ..., b(k)} is a vector of positive integers such that Sum_{i=1..k} b(i)^2 = n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 3, 2, 4, 0, 3, 2, 4, 0, 3, 6, 4, 8, 3, 6, 4, 8, 9, 6, 12, 8, 16, 6, 12, 8, 16, 18, 12, 24, 16, 32, 12, 24, 27, 32, 36, 24, 48, 32, 64, 24, 48, 54, 64, 72, 48, 96, 64, 128, 81, 96, 108, 128, 144, 96, 192, 128, 256
Offset: 0

Views

Author

Yifan Xie, Dec 16 2023

Keywords

Comments

a(n) = 0 if and only if n cannot be expressed as the sum of positive squares other than 1. The largest such n is 23. See A078134.
All terms can be expressed in the form of 2^x*3^y, with y <= 4.
Proof: (Start)
If prime p >= 5 is a factor of a(n), where n = Sum_{i=1..k} b(i)^2 and a(n) = Product_{i=1..k} (b(k)-1), there must be a number 1 <= j <= k where b(j) = q*p + 1, where q is a positive integer.
If q is odd, b(j)^2 = (q*p + 1)^2 = 4*((q*p + 1)/2)^2 results in q*p, a factor of a(n), being replaced by (q*p - 1)^4/16. Since q*p >= 5, q*p < (q*p - 1)^4/16.
If q is even, b(j)^2 = (2*(q/2)*p + 1)^2 = 4*(q*p/2)^2 + (q*p/2 - 2)*2^2 + 3^2 results in q*p being replaced by (q*p - 2)^4/8. Since q*p >=5, q*p < (q*p - 2)^4/8.
In conclusion, if prime p >= 5 is a factor of a(n), the value of a(n) can be improved, so the a(n) is invalid.
If y >= 5, since 5*4^2 = 80 = 8^3^2 + 2*2^2 results in 3^5 = 243 being replaced by 2^8 = 256 > 243, so the a(n) is invalid. (End)

Examples

			For n = 23, it's impossible to write 23 as the sum of positive squares other than 1, so a(23) = 0;
For n = 69, a(69) = max{0, a(65), 2*a(60), 3*a(53), 4*a(44), 5*a(33), 6*a(20), 7*a(5)} = 2*a(60) = 256.
		

Crossrefs

Programs

  • Mathematica
    a[nn_] := Module[{v},v = {1};For[n = 2, n <= nn, n++,Module [{i=1,t=0},While[i^2James C. McMahon, Dec 17 2023 From PARI *)
  • PARI
    lista(nn) = {my(v = vector(nn+1)); v[1] = 1; for(n=2, nn+1, my(i=1, t=0); for(i=1, sqrtint(n-1), t=max(t, (i-1)*v[n-i*i])); v[n] = t); v;}

Formula

a(n) = Max_{i^2 <= n} (i-1)*a(n^2-i).
Let n = 4*k + r, 0 <= r <= 3. a(n) = max{2^(4*ceiling((k - 2*r)/9) + r)*3^(ceiling((k - 2*r - 9*ceiling((k - 2*r)/9))/4)), 2^(4*(ceiling((k - 2*r)/9) - 1) + r)*3^(ceiling((k - 2*r - 9*ceiling((k - 2*r)/9 - 1))/4))}

A281154 Expansion of (Sum_{k>=2} x^(k^2))^2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 2 squares > 1.

Examples

			G.f. = x^8 + 2*x^13 + x^18 + 2*x^20 + 2*x^25 + 2*x^29 + x^32 + 2*x^34 + 2*x^40 + ...
a(13) = 2 because we have [9, 4] and [4, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[x^k^2, {k, 2, nmax}]^2, {x, 0, nmax}], x]
    CoefficientList[Series[(1 + 2 x - EllipticTheta[3, 0, x])^2/4, {x, 0, 105}], x]

Formula

G.f.: (Sum_{k>=2} x^(k^2))^2.
G.f.: (1/4)*(1 + 2*x - theta_3(0,x))^2, where theta_3 is the 3rd Jacobi theta function.

A298600 Expansion of Product_{k>=2} 1/(1 + x^(k^2)).

Original entry on oeis.org

1, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 0, -2, 2, -1, 1, 2, -2, 1, -1, -2, 3, -2, 1, 2, -3, 2, -1, -1, 2, -3, 1, 1, -2, 3, 0, 0, 2, -3, 1, -1, -2, 3, -1, -2, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

The difference between the number of partitions of n into an even number of squares > 1 and the number of partitions of n into an odd number of squares > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 82; CoefficientList[Series[Product[1/(1 + x^k^2), {k, 2, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} 1/(1 + x^(k^2)).

A298601 Expansion of Product_{k>=2} (1 - x^(k^2)).

Original entry on oeis.org

1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -2, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, 1, 1, 0, 0, -2, 0, 0, 1, 0, 0, -1, -1, 2, 1, 1, 0, -1, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

The difference between the number of partitions of n into an even number of distinct squares > 1 and the number of partitions of n into an odd number of distinct squares > 1.
Partial sums of A276516.

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Product[1 - x^k^2, {k, 2, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 - x^(k^2)).
Previous Showing 21-30 of 33 results. Next