A252836 T(n,k)=Number of nXk nonnegative integer arrays with upper left 0 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
1, 2, 2, 4, 5, 4, 7, 13, 13, 7, 11, 29, 44, 29, 11, 16, 53, 127, 127, 53, 16, 22, 85, 288, 493, 288, 85, 22, 29, 125, 529, 1474, 1474, 529, 125, 29, 37, 173, 850, 3365, 6068, 3365, 850, 173, 37, 46, 229, 1251, 6211, 18528, 18528, 6211, 1251, 229, 46, 56, 293, 1732, 10017
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..2..2....0..1..1..2....0..0..1..1....0..0..1..1....0..0..1..1 ..1..1..2..2....0..1..1..2....1..1..1..1....0..1..1..1....1..1..1..1 ..1..1..2..3....1..1..2..2....1..1..2..2....0..1..1..1....1..1..1..1 ..1..2..2..3....1..1..2..2....1..2..2..3....1..1..2..2....1..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1135
Formula
Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (1/2)*n + 1
k=2: a(n) = 4*n^2 - 12*n + 13 for n>1
k=3: a(n) = 40*n^2 - 199*n + 283 for n>3
k=4: a(n) = 480*n^2 - 3394*n + 6449 for n>5
k=5: a(n) = 6400*n^2 - 59190*n + 143483 for n>7
k=6: a(n) = 90112*n^2 - 1032064*n + 3059590 for n>9
k=7: a(n) = 1306624*n^2 - 17846996*n + 62638467 for n>11
Comments