cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A116432 The number of n-almost primes less than or equal to e^n, starting with a(0)=1.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 12, 18, 24, 37, 54, 74, 107, 159, 218, 315, 450, 634, 888, 1269, 1782, 2496, 3520, 4933, 6899, 9681, 13555, 18888, 26407, 36855, 51352, 71526, 99654, 138608, 192708, 267833, 372107, 516420, 716816, 994191, 1378195, 1909694
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, E^n], {n, 42}]

A116433 Consider the array T(r,c) where is the number of c-almost primes less than or equal to r^c, r >= 1, c >= 0. Read the array by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 3, 1, 0, 1, 3, 6, 5, 1, 0, 1, 3, 9, 13, 8, 1, 0, 1, 4, 13, 30, 34, 14, 1, 0, 1, 4, 17, 50, 90, 77, 23, 1, 0, 1, 4, 22, 82, 200, 269, 177, 39, 1, 0, 1, 4, 26, 125, 385, 726, 788, 406, 64, 1, 0, 1, 5, 34, 181, 669, 1688, 2613, 2249, 887, 103, 1, 0, 1, 5
Offset: 0

Views

Author

Keywords

Examples

			The array begins:
  0 0 0 0 0 0 0 0 0 0 0
  1 1 1 1 1 1 1 1 1 1 1
  1 2 3 5 8 14 23 39 64 103 169
  1 2 6 13 34 77 177 406 887 1962 4225
  1 3 9 30 90 269 788 2249 6340 17526 47911
T(3,2)=3 because there are 3 2-almost primes <= 3^2 = 9, namely 4, 6, and 9 (see A001358).
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ If[k == 0, 1, AlmostPrimePi[n - k + 1, k^(n - k + 1)]], {n, 0, 7}, {k, n, 0, -1}] // Flatten

Extensions

NAME corrected by R. J. Mathar, Jun 20 2021

A376479 Array read by antidiagonals: T(n,k) is the index of prime(k)^n in the numbers with n prime factors, counted with multiplicity.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 9, 5, 1, 5, 17, 30, 8, 1, 6, 40, 82, 90, 14, 1, 7, 56, 328, 385, 269, 23, 1, 8, 90, 551, 2556, 1688, 788, 39, 1, 9, 114, 1243, 5138, 18452, 7089, 2249, 64, 1, 10, 164, 1763, 15590, 44329, 126096, 28893, 6340, 103, 1, 11, 253, 3112, 24646, 179313, 361249, 827901, 115180, 17526
Offset: 1

Views

Author

Robert Israel, Sep 24 2024

Keywords

Comments

T(n,k) is the number of numbers j with n prime factors, counted with multiplicity, such that j <= prime(k)^n.

Examples

			T(2,3) = 9 because the third prime is 5 and 5^2 = 25 is the 9th semiprime.
		

Crossrefs

Cf. A001222, A078843 (second column), A078844 (third column), A078845 (fourth column), A078846 (fifth column), A128301 (second row), A128302 (third row), A128304 (fourth row).

Programs

  • Maple
    T:= Matrix(12,12):
    with(priqueue);
    for m from 1 to 12 do
      initialize(pq);
      insert([-2^m, [2$m]],pq);
      k:= 0:
      for count from 1 do
        t:= extract(pq);
        w:= t[2];
        if nops(convert(w,set))=1 then
          k:= k+1;
          T[m,k]:= count;
          if m+k = 13 then break fi;
        fi;
        p:= nextprime(w[-1]);
        for i from m to 1 by -1 while w[i] = w[m] do
          insert([t[1]*(p/w[-1])^(m+1-i),[op(w[1..i-1]),p$(m+1-i)]],pq);
    od od od:
    seq(seq(T[i,s-i],i=1..s-1),s=2..13)
Previous Showing 11-13 of 13 results.