cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A208732 Sequence related to Kashaev's invariant for the (9,2)-torus knot.

Original entry on oeis.org

1, 4, 36, 664, 21276, 1050664, 73939356, 7024817944, 866058563196, 134419597387144, 25644210185987676, 5897980691609567224, 1609292585008090909116, 513950106691675965931624, 189914985024774644611299996
Offset: 0

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

This is sequence b_n(9) in Table 2 of Hikami 2003.

Crossrefs

Formula

a(n) = (49/72)^n*sum {k = 0..n} binomial(n,k)*A208681(k+1)/49^k.
Conjectural S-fraction for the o.g.f.: 1/(1-4*x/(1-5*x/(1-17*x/(1-19*x/(1-...-1/2*n*(9*n-1)*x/(1-1/2*n*(9*n+1)*x/(1- ....

A301871 Number of N- and bowtie-free posets with n elements.

Original entry on oeis.org

1, 2, 5, 14, 40, 121, 373, 1184, 3823, 12554, 41733, 140301, 475934, 1627440, 5602983, 19406703, 67574371, 236409625, 830582851, 2929246932, 10366380583, 36801225872, 131021870786, 467701875135, 1673584553886, 6002046468815, 21570135722058, 77668429499325, 280167079428684, 1012323004985313
Offset: 1

Views

Author

Stephan Wagner, Mar 28 2018

Keywords

Comments

The number of n-element posets that do not include the two 4-element posets "N" and "bowtie" as induced subposets.

Crossrefs

Cf. A000112, A003430, A079144, A079146 for related sequences regarding the enumeration of unlabeled posets.

Programs

  • Mathematica
    V=1;Do[V = Normal[Series[(1 - x) Exp[Sum[(2 x^m - x^(2 m)) (V /. x -> x^m)/m, {m, 1, n}]], {x, 0, n}]], {n, 1, 20}]; Table[Coefficient[V,x,n],{n, 1, 20}]

Formula

G.f. V(x) = 1 + x + 2x + 5x^2 + ... satisfies V(x) = (1-x)exp[sum_{m >=1} (2x^m-x^(2m))V(x^m)/m] (see Razanajatovo Misanantenaina/Wagner).

A187803 E.g.f.: Sum_{n>=0} Product_{k=1..n} (1 - exp(-n*k*x)).

Original entry on oeis.org

1, 1, 15, 829, 113487, 31137061, 15015039495, 11636995485949, 13584094722071007, 22735343245138118101, 52487807127760090483575, 162018777092079952134169069, 651747862300297714019151918927, 3344015911143306355676226376118341, 21488215819992049616143504500848490855
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2013

Keywords

Comments

Compare to the e.g.f. of A079144, enumerating certain labeled interval orders:
Sum_{n>=0} Product_{k=1..n} (1 - exp(-k*x)).
Also compare to the e.g.f. of A220181: Sum_{n>=0} (1 - exp(-n*x))^n.

Examples

			E.g.f.: A(x) = 1 + x + 15*x^2/2! + 829*x^3/3! + 113487*x^4/4! +...
where
A(x) = 1 + (1-exp(-x)) + (1-exp(-2*1*x))*(1-exp(-2*2*x)) + (1-exp(-3*1*x))*(1-exp(-3*2*x))*(1-exp(-3*3*x)) + (1-exp(-4*1*x))*(1-exp(-4*2*x))*(1-exp(-4*3*x))*(1-exp(-4*4*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1,m,(1-exp(-m*k*x+x*O(x^n)))) ), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 2.426663845780394275167988381..., c = 0.504146101604802096078745... . - Vaclav Kotesovec, Nov 03 2014
Previous Showing 11-13 of 13 results.