A254413
Primes in the 8th-order Fibonacci numbers A123526.
Original entry on oeis.org
29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705,
A123526,
A254412.
-
a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)
A302990
a(n) = index of first odd prime number in the (n-th)-order Fibonacci sequence Fn, or 0 if no such index exists.
Original entry on oeis.org
0, 0, 4, 6, 9, 10, 40, 14, 17, 19, 361, 23, 90, 26, 373, 47, 288, 34, 75, 38, 251, 43, 67, 47, 74, 310, 511, 151534, 57, 20608, 1146, 62, 197, 94246, 9974, 287, 271172, 758
Offset: 0
a(2) = 4 because F2 (Fibonacci) = 0, 1, 1, 2, 3, 5, 8, ... and F2(4) = 3 is prime.
a(3) = 6 because F3 (tribonacci) = 0, 0, 1, 1, 2, 4, 7, 13, ... and F3(6) = 7 is prime.
a(4) = 9 because F4 (tetranacci) = 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, ... and F4(9) = 29 is prime.
From _M. F. Hasler_, Apr 18 2018: (Start)
We see that Fn(k) = 2^(k-n) for n <= k < 2n and thus Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043.
a(n) = 2n + 1 when 2^(n+1) - 3 is prime (n+1 in A050414) but 2^n-1 is not, i.e., n = 4, 8, 9, 11, 21, 23, 28, 93, 115, 121, 149, 173, 212, 220, 232, 265, 335, 451, 544, 688, 693, 849, 1735, ...
For other primes we have: a(29) = 687*30 - 2, a(37) = 20*38 - 2, a(41) > 10^4, a(43) > 10^4, a(47) = 5*48 - 1, a(53) = 53*54 - 2, a(59) = 307*60 - 2, a(67) = 6*67 - 1. (End)
Cf.
A001605 (indices of prime numbers in F2).
-
A302990(n,L=oo,a=vector(n+1,i,if(i1 && for(i=-2+2*n+=1,L, ispseudoprime(a[i%n+1]=2*a[(i-1)%n+1]-a[i%n+1]) && return(i))} \\ Testing primality only for i%n>n-3 is not faster, even for large n. - M. F. Hasler, Apr 17 2018; improved Apr 18 2018
A181190
Maximal length of chain-addition sequence mod 10 with window of size n.
Original entry on oeis.org
1, 60, 124, 1560, 4686, 1456, 18744, 585936, 4882810, 212784
Offset: 1
Alexander Dashevsky (atanvarnoalda(AT)gmail.com), Oct 10 2010
For n=2, the longest sequence begins with '01' (among others):
01123583145943707741561785381909987527965167303369549325729101.
It is 60 digits long (not counting the second '01' at the end).
For n=3, one of the longest sequences begins again with '001':
00112473441944756893025746770415061742394699425184352079627546556679289964992013
48570291225960516297849144970639807524172091001 (124 digits long without the second '001').
A255529
Indices of primes in the 9th-order Fibonacci number sequence, A104144.
Original entry on oeis.org
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A104144.
-
a={0,0,0,0,0,0,0,0,1}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
-
a104144(n) = polcoeff(x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9) + O(x^(n+1)), n);
lista(nn) = {for (n=1, nn, if (isprime(a104144(n)), print1(n, ", ")););} \\ Michel Marcus, Feb 27 2015
A255530
Indices of primes in the 9th-order Fibonacci number sequence, A251746.
Original entry on oeis.org
10, 19, 59, 79, 12487
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251746.
-
a={0,0,0,0,0,0,0,1,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
A255531
Indices of primes in the 9th-order Fibonacci number sequence, A251747.
Original entry on oeis.org
10, 16, 116, 236, 316, 1376, 5066, 103696, 120949
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251747.
-
a={0,0,0,0,0,0,1,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,0,0,0,0,1,0,0},125000],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 29 2017 *)
A255532
Indices of primes in the 9th-order Fibonacci number sequence, A251749.
Original entry on oeis.org
10, 14, 19, 29, 404, 1744, 8854, 27754
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251749.
-
a={0,0,0,0,1,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
A255533
Indices of primes in the 9th-order Fibonacci number sequence, A251750.
Original entry on oeis.org
10, 33, 43, 253, 1253, 2389
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251750.
-
a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
A255534
Indices of primes in the 9th-order Fibonacci number sequence, A251751.
Original entry on oeis.org
10, 12, 232, 502
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251751.
-
a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)
A255536
Indices of primes in the 9th-order Fibonacci number sequence, A251752.
Original entry on oeis.org
10, 11, 21, 29, 301, 57089
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251752.
-
a={0,1,0,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Comments