cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A254413 Primes in the 8th-order Fibonacci numbers A123526.

Original entry on oeis.org

29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1

Views

Author

Robert Price, Jan 30 2015

Keywords

Comments

a(12) is too large to display here. It has 46 digits and is the 158th term in A123526.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)

A302990 a(n) = index of first odd prime number in the (n-th)-order Fibonacci sequence Fn, or 0 if no such index exists.

Original entry on oeis.org

0, 0, 4, 6, 9, 10, 40, 14, 17, 19, 361, 23, 90, 26, 373, 47, 288, 34, 75, 38, 251, 43, 67, 47, 74, 310, 511, 151534, 57, 20608, 1146, 62, 197, 94246, 9974, 287, 271172, 758
Offset: 0

Views

Author

Jacques Tramu, Apr 17 2018

Keywords

Comments

Fn is defined by: Fn(0) = Fn(1) = ... = Fn(n-2) = 0, Fn(n-1) = 1, and Fn(k+1) = Fn(k) + Fn(k-1) + ... + Fn(k-n+1).
In general, Fn(k) is odd iff k == -1 or -2 (mod n+1), therefore a(n) = k*(n+1) - (1 or 2) for all n. Since Fn(n-1) = F(n) = 1, we must have a(n) >= 2n. Since Fn(k) = 2^(k-n) for n <= k < 2n, Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043, while a(n) = 2n+1 when n is not in A000043 but n+1 is in A050414. - M. F. Hasler, Apr 18 2018
Further terms of the sequence: a(38) > 62000, a(39) > 72000, a(40) = 285, a(41) > 178000, a(42) = 558, a(44) = 19529, a(46) = 33369, a(47) = 239, a(48) = 6368, a(53) = 2860, a(54) = 2418, a(58) = 176, a(59) = 18418, a(60) = 1463, a(61) = 122, a(62) = 8755, a(63) = 5118, a(64) = 25089, a(65) = 988, a(66) = 333, a(67) = 406, a(70) = 1632, a(74) = 374, a(76) = 13704, a(77) = 4991, a(86) = 347, a(89) = 178, a(92) = 1114, a(93) = 187, a(98) = 395, a(100) > 80000; a(n) > 10^4 for all other n up to 100. - Jacques Tramu and M. F. Hasler, Apr 18 2018

Examples

			a(2) = 4 because F2 (Fibonacci) = 0, 1, 1, 2, 3, 5, 8, ... and F2(4) = 3 is prime.
a(3) = 6 because F3 (tribonacci) = 0, 0, 1, 1, 2, 4, 7, 13, ... and F3(6) = 7 is prime.
a(4) = 9 because F4 (tetranacci) = 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, ...  and F4(9) = 29 is prime.
From _M. F. Hasler_, Apr 18 2018: (Start)
We see that Fn(k) = 2^(k-n) for n <= k < 2n and thus Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043.
a(n) = 2n + 1 when 2^(n+1) - 3 is prime (n+1 in A050414) but 2^n-1 is not, i.e., n = 4, 8, 9, 11, 21, 23, 28, 93, 115, 121, 149, 173, 212, 220, 232, 265, 335, 451, 544, 688, 693, 849, 1735, ...
For other primes we have: a(29) = 687*30 - 2, a(37) = 20*38 - 2, a(41) > 10^4, a(43) > 10^4, a(47) = 5*48 - 1, a(53) = 53*54 - 2, a(59) = 307*60 - 2, a(67) = 6*67 - 1. (End)
		

Crossrefs

Cf. A000045 (F2), A000073 (F3), A000078 (F4), A001591 (F5), A001592 (F6), A122189(F7), A079262 (F8), A104144 (F9), A122265 (F10).
(According to the definition, F0 = A000004 and F1 = A000012.)
Cf. A001605 (indices of prime numbers in F2).

Programs

  • PARI
    A302990(n,L=oo,a=vector(n+1,i,if(i1 && for(i=-2+2*n+=1,L, ispseudoprime(a[i%n+1]=2*a[(i-1)%n+1]-a[i%n+1]) && return(i))} \\ Testing primality only for i%n>n-3 is not faster, even for large n. - M. F. Hasler, Apr 17 2018; improved Apr 18 2018

Formula

a(n) == -1 or -2 (mod n+1). a(n) >= 2n, with equality iff n is in A000043. a(n) <= 2n+1 for n+1 in A050414. - M. F. Hasler, Apr 18 2018

Extensions

a(29) from Jacques Tramu, Apr 19 2018
a(33) from Daniel Suteu, Apr 20 2018
a(36) from Jacques Tramu, Apr 25 2018

A181190 Maximal length of chain-addition sequence mod 10 with window of size n.

Original entry on oeis.org

1, 60, 124, 1560, 4686, 1456, 18744, 585936, 4882810, 212784
Offset: 1

Views

Author

Alexander Dashevsky (atanvarnoalda(AT)gmail.com), Oct 10 2010

Keywords

Comments

Chain addition mod 10 with window n: take an n-digit 'seed'. Take the sum of its digits mod 10 and append to the seed. Repeat with the last n digits of the string, until the seed appears again.
This sequence shows the lengths of the longest sequences for different window sizes.
a(1)-a(10) all occur for seed 1 (among others). If this is always true, the sequence continues: 406224, 12695306, 4272460934, 380859180, 122070312496, 518798826, 3433227539058. - Lars Blomberg, Feb 12 2013
Comment from Michel Lagneau, Jan 20 2017, edited by N. J. A. Sloane, Jan 24 2017: (Start)
If seed 1 is always as good as or better than any other, as seems likely, then this sequence has the following alternative description.
Consider the n initial terms of an infinite sequence S(k, n) of decimal digits given by 0, 0,..., 0, 1. The succeeding terms are given by the final digits in the sum of the n immediately preceding terms. The sequence lists the period of each sequence corresponding to n = 2, 3, ...
a(2) = period of A000045 mod 10 (Fibonacci numbers mod 10) = A001175(10).
a(3) = period of A000073 mod 10 (tribonacci numbers mod 10) = A046738(10).
a(4) = period of A000078 mod 10 (tetranacci numbers mod 10) = A106295(10).
a(5) = period of A001591 mod 10 (pentanacci numbers mod 10) = A106303(10).
a(6) = period of A001592 mod 10 (hexanacci numbers mod 10).
a(7) = period of A122189 mod 10 (heptanacci numbers mod 10).
a(8) = period of A079262 mod 10 (octanacci numbers mod 10).
a(4) = 1560 because the four initial terms 0, 0, 0, 1 => S(k, 4) = 0, 0, 0, 1, 1, 2, 4, 8, 5, 9, 6, 8, 8, 1, 3, 0, 2, 6, 1, 9, 8, ... (tetranacci numbers mod 10). This sequence is periodic with period 1560:
S(1560 + 1, 4) = S(1, 4) = 0,
S(1560 + 2, 4) = S(2, 4) = 0,
S(1560 + 3, 4) = S(3, 4) = 0,
S(1560 + 4, 4) = S(4, 4) = 1.
(End)

Examples

			For n=2, the longest sequence begins with '01' (among others):
01123583145943707741561785381909987527965167303369549325729101.
It is 60 digits long (not counting the second '01' at the end).
For n=3, one of the longest sequences begins again with '001':
00112473441944756893025746770415061742394699425184352079627546556679289964992013
48570291225960516297849144970639807524172091001 (124 digits long without the second '001').
		

Crossrefs

Extensions

a(8)-a(10) from Lars Blomberg, Feb 12 2013

A255529 Indices of primes in the 9th-order Fibonacci number sequence, A104144.

Original entry on oeis.org

10, 19, 878
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(4) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,0,1}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
  • PARI
    a104144(n) = polcoeff(x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9) + O(x^(n+1)), n);
    lista(nn) = {for (n=1, nn, if (isprime(a104144(n)), print1(n, ", ")););} \\ Michel Marcus, Feb 27 2015

A255530 Indices of primes in the 9th-order Fibonacci number sequence, A251746.

Original entry on oeis.org

10, 19, 59, 79, 12487
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(6) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255531 Indices of primes in the 9th-order Fibonacci number sequence, A251747.

Original entry on oeis.org

10, 16, 116, 236, 316, 1376, 5066, 103696, 120949
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(10) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,1,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,0,0,0,0,1,0,0},125000],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 29 2017 *)

A255532 Indices of primes in the 9th-order Fibonacci number sequence, A251749.

Original entry on oeis.org

10, 14, 19, 29, 404, 1744, 8854, 27754
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(9) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,1,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255533 Indices of primes in the 9th-order Fibonacci number sequence, A251750.

Original entry on oeis.org

10, 33, 43, 253, 1253, 2389
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255534 Indices of primes in the 9th-order Fibonacci number sequence, A251751.

Original entry on oeis.org

10, 12, 232, 502
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(5) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)

A255536 Indices of primes in the 9th-order Fibonacci number sequence, A251752.

Original entry on oeis.org

10, 11, 21, 29, 301, 57089
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,1,0,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Previous Showing 21-30 of 30 results.