cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A079919 Solution to the Dancing School Problem with 14 girls and n+14 boys: f(14,n).

Original entry on oeis.org

1, 15, 4163, 158364, 3904260, 60560175, 671224467, 5697401802, 38983643908, 223245029176, 1100925116264, 4780871048064, 18612106195456, 65909241461760, 214868401724416, 650515953570304, 1842743223078144, 4916155345428736, 12422627638293760, 29881211844270336, 68721268507385344, 151698799246127104
Offset: 0

Views

Author

Jaap Spies, Jan 28 2003

Keywords

Comments

f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.

Crossrefs

Formula

a(n) = n^14 - 77*n^13 + 3094*n^12 - 83083*n^11 + 1637636*n^10 - 24785761*n^9 + 294696402*n^8 - 2779448529*n^7 + 20797459683*n^6 - 122389753486*n^5 + 555826054784*n^4 - 1883902028008*n^3 + 4494445040176*n^2 - 6742111050752*n + 4789534153984 for n >= 12. - Georg Fischer, Apr 27 2021 (polynomial computed by the program in links)

Extensions

Corrected by Jaap Spies, Feb 01 2004
a(13)-a(21) from Georg Fischer, Apr 27 2021

A079920 Solution to the Dancing School Problem with 15 girls and n+15 boys: f(15,n).

Original entry on oeis.org

1, 16, 6746, 313464, 9479292, 174763208, 2262089361, 22088730348, 171764779170, 1106667645872, 6087616677864, 29267369636800, 125299076209408, 485013257865472, 1718947213795328, 5636819806209792, 17235204961273600, 49467590616190208, 134058587073795072, 344809293460572928, 845577589114049792, 1985060631106310400
Offset: 0

Views

Author

Jaap Spies, Jan 28 2003

Keywords

Comments

f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.

Crossrefs

Formula

a(n) = n^15 - 90*n^14 + 4200*n^13 - 131040*n^12 + 3011190*n^11 - 53441388*n^10 + 751250500*n^9 - 8470570680*n^8 + 76896261585*n^7 - 560015385930*n^6 + 3235452199980*n^5 - 14525684311320*n^4 + 48947506506080*n^3 - 116650912956480*n^2 + 175512302620800*n - 125495209214208 for n >= 13. - Georg Fischer, Apr 27 2021 (polynomial computed by the program in links)

Extensions

Corrected by Jaap Spies, Feb 01 2004
a(12)-a(21) from Georg Fischer, Apr 27 2021

A169629 Array T(n,k) read by antidiagonals: T(n,k) = Sum_{v=1..n, v odd} binomial(n,v)*k^v.

Original entry on oeis.org

1, 2, 2, 4, 4, 3, 8, 14, 6, 4, 16, 40, 36, 8, 5, 32, 122, 120, 76, 10, 6, 64, 364, 528, 272, 140, 12, 7, 128, 1094, 2016, 1684, 520, 234, 14, 8, 256, 3280, 8256, 7448, 4400, 888, 364, 16, 9, 512, 9842, 32640, 40156, 21280, 9966, 1400, 536, 18, 10
Offset: 1

Views

Author

Roger L. Bagula, Mar 03 2010

Keywords

Comments

Antidiagonal sums are: 1, 4, 11, 32, 105, 366, 1387, ...

Examples

			   1,    2,    3,     4,      5,      6,       7, ...
   2,    4,    6,     8,     10,     12,      14, ...
   4,   14,   36,    76,    140,    234,     364, ...
   8,   40,  120,   272,    520,    888,    1400, ...
  16,  122,  528,  1684,   4400,   9966,   20272, ...
  32,  364, 2016,  7448,  21280,  51012,  107744, ...
  64, 1094, 8256, 40156, 148160, 450834, 1188544, ...
		

Crossrefs

Cf. A152011.
Cf. A005843 (2nd line), A079908 (3rd line), A105374 (4th line).

Programs

  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, nn, print1(sum(v=1, n, (v%2)*binomial(n, v)*k^v), ", ");); print(););} \\ Michel Marcus, Jul 22 2015

A180359 n^9+9n.

Original entry on oeis.org

0, 10, 530, 19710, 262180, 1953170, 10077750, 40353670, 134217800, 387420570, 1000000090, 2357947790, 5159780460, 10604499490, 20661046910, 38443359510, 68719476880, 118587876650, 198359290530, 322687697950, 512000000180
Offset: 0

Views

Author

Odimar Fabeny, Aug 30 2010

Keywords

Crossrefs

Formula

a(n)= +10*a(n-1) -45*a(n-2) +120*a(n-3) -210*a(n-4) +252*a(n-5) -210*a(n-6) +120*a(n-7) -45*a(n-8) +10*a(n-9) -a(n-10). G.f.: 10*x*(1+43*x+1486*x^2+8773*x^3+15682*x^4+8773*x^5+1486*x^6+43*x^7+x^8)/(x -1)^10. [From R. J. Mathar, Sep 19 2010]

Extensions

a(0) corrected by R. J. Mathar, Sep 19 2010

A356976 Least positive integer m such that the numbers k^3 + 3*k (k = 1..n) are pairwise distinct modulo m.

Original entry on oeis.org

1, 3, 3, 7, 15, 15, 19, 27, 27, 39, 39, 39, 61, 61, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 07 2022

Keywords

Comments

Conjecture 1: If n is at least 15, then a(n) is the least power of 3 not smaller than 3*n.
Conjecture 2: For each positive integer n, the least positive integer m such that those numbers 2*k^3 + k (k = 1..n) are pairwise distinct modulo m, is just the least power of 2 not smaller than n.
Conjecture 3: For any positive integer n, the least positive integer m such that those numbers 2*k^3 - 4*k (k = 1..n) are pairwise distinct modulo m, is just the least power of 3 not smaller than n.
Conjecture 4: For each positive integer n not equal to 4, the least positive integer m such that those numbers 16*k^3 - 8*k (k = 1..n) are pairwise distinct modulo m, is just the least power of 3 not smaller than n.
The author formulated Conjectures 1-4 on Nov. 16, 2021, and verified them for n up to 10^5.

Examples

			a(2) = 3, for, 1^3 + 3*1 = 4 and 2^3 + 3*2 = 14 are incongruent modulo 3, but congruent modulo 1 and 2.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=f[k]=k^3+3*k;
    U[m_, n_]:=U[m, n]=Length[Union[Table[Mod[f[k], m], {k, 1, n}]]]
    tab={}; s=1; Do[m=s; Label[bb]; If[U[m, n]==n, s=m; tab=Append[tab, s]; Goto[aa]];
    m=m+1; Goto[bb]; Label[aa], {n, 1, 80}]; Print[tab]
Previous Showing 31-35 of 35 results.