A123971
Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.
Original entry on oeis.org
1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0
Triangle begins:
1
2, -1
5, -5, 1
13, -19, 8, -1
34, -65, 42, -11, 1
89, -210, 183, -74, 14, -1
233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
1
0, 1
0, 2, -1
0, 5, -5, 1
0, 13, -19, 8, -1
0, 34, -65, 42, -11, 1
0, 89, -210, 183, -74, 14, -1
0, 233, -654, 717, -394, 115, -17, 1
Cf.
A094954,
A098495,
A123971,
A126124,
A152063,
A001519,
A079935,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570,
A001870,
A126124.
-
Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
-
T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
-
@CachedFunction
def A123971(n,k): # With T(0,0) = 1!
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
return A123971(n-1,k-1) - A123971(n-2,k) - h
for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A052677
Expansion of e.g.f. (1-x)/(1-4*x+x^2).
Original entry on oeis.org
1, 3, 22, 246, 3672, 68520, 1534320, 40083120, 1196737920, 40196580480, 1500156806400, 61585275628800, 2758072531737600, 133812468652262400, 6991529043750451200, 391391124208051968000, 23371064978815217664000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
[n le 2 select 3^(n-1) else 4*(n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jun 11 2022
-
spec := [S,{S=Sequence(Union(Z,Prod(Sequence(Z),Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(1-x)/(1-4x+x^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 28 2016 *)
-
[factorial(n)*sum( binomial(2*n-k, k)*2^(n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 11 2022
A167479
Convolution of the Catalan numbers A000108(n) and (-2)^n.
Original entry on oeis.org
1, -1, 4, -3, 20, 2, 128, 173, 1084, 2694, 11408, 35970, 136072, 470756, 1732928, 6228989, 22899692, 83845406, 309947888, 1147367414, 4269385592, 15927495836, 59627571968, 223804469714, 842295207896, 3177355985660, 12012641100832
Offset: 0
-
CoefficientList[Series[(1 - Sqrt[1 - 4*t])/(2*t*(1 + 2*t)), {t, 0, 50}], t] (* G. C. Greubel, Jun 13 2016 *)
A375098
Diagonals of a Euclidian solid such that there exists a Pythagorean quadruple d^2=a^2+b^2+c^2 that is more cube-like than any prior value of d.
Original entry on oeis.org
3, 9, 11, 41, 123, 153, 571, 1713, 2131, 7953, 23859, 29681, 110771, 332313, 413403, 1542841, 4628523, 5757961, 21489003, 64467009, 80198051, 299303201, 897909603, 1117014753, 4168755811, 12506267433, 15558008491, 58063278153, 174189834459, 216695104121
Offset: 1
3 is in the sequence because 3^2=1^2+2^2+2^2 is the smallest Pythagorean quad, with an error of one part in 4.344.
6 is NOT in the sequence because {6,2,4,4} is the most cube-like Pythagorean quad, but only ties the previous record without breaking it.
7 is NOT in the sequence because the most cube-like quad {7,2,3,6} has an error of one part in 2.2, worse than that for d=3.
9 is in the sequence NOT because of {9,3,6,6} which ties the previous record, but because {9,4,4,7} improves on the previous record with an error of one part in 4.958.
Cf.
A001653: The 2D equivalent of this sequence (i.e., right triangle whose legs are closest to equal)
Comments