cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A120909 Triangle read by rows: T(n,k) is the number of ternary words of length n having k runs (i.e., subwords of maximal length) of identical letters (1 <= k <= n).

Original entry on oeis.org

3, 3, 6, 3, 12, 12, 3, 18, 36, 24, 3, 24, 72, 96, 48, 3, 30, 120, 240, 240, 96, 3, 36, 180, 480, 720, 576, 192, 3, 42, 252, 840, 1680, 2016, 1344, 384, 3, 48, 336, 1344, 3360, 5376, 5376, 3072, 768, 3, 54, 432, 2016, 6048, 12096, 16128, 13824, 6912, 1536, 3, 60
Offset: 1

Views

Author

Emeric Deutsch, Jul 15 2006

Keywords

Comments

Row sums are the powers of 3 (A000244).

Examples

			T(3,2)=12 because we have 001,002,011,022,100,110,112,122,200,211,220 and 221.
Triangle starts:
  3;
  3,  6;
  3, 12, 12;
  3, 18, 36, 24;
  3, 24, 72, 96, 48;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->3*2^(k-1)*binomial(n-1,k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&];a=y x/(1-x) +1;b=a^2/(1-(a-1)^2 );Drop[Map[f,CoefficientList[Series[b a/(1-(a-1)(b-1)),{x,0,nn}],{x,y}]],1]//Grid  (* Geoffrey Critzer, Nov 20 2012 *)

Formula

T(n,k) = 3*2^(k-1)*binomial(n-1,k-1).
G(t,z) = 3*t*z/(1-z-2*t*z).
T(n,k) = 3*A013609(n-1,k-1).
T(n,k) = A120910(n,n-k).
Sum_{k>=1} k*T(n,k) = 3*A081038(n-1).

A380747 Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.

Original entry on oeis.org

1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 31 2025

Keywords

Examples

			The array begins as:
   1, 1,   1,    1,     1,     1, ...
  -1, 1,   3,    5,     7,     9, ...
   0, 1,   8,   21,    40,    65, ...
   0, 1,  20,   81,   208,   425, ...
   0, 1,  48,  297,  1024,  2625, ...
   0, 1, 112, 1053,  4864, 15625, ...
   0, 1, 256, 3645, 22528, 90625, ...
   ...
		

Crossrefs

Cf. A000012 (k=1 or n=0), A000567 (n=2), A001792 (k=2), A007778, A060747 (n=1), A081038 (k=3), A081039 (k=4), A081040 (k=5), A081041 (k=6), A081042 (k=7), A081043 (k=8), A081044 (k=9), A081045 (k=10), A103532, A154955, A380748 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = ((k - 1)*n + k)*k^(n-1) with A(0,0) = 1.
A(n,k) = n! * [x^n] exp(k*x)*(1 + (k - 1)*x).
A(n,0) = A154955(n+1).
A(3,n) = A103532(n-1) for n > 0.
A(n,n) = A007778(n) for n > 0.

A183189 Triangle T(n,k), read by rows, given by (2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 6, 1, 0, 18, 5, 0, 0, 54, 21, 1, 0, 0, 162, 81, 8, 0, 0, 0, 486, 297, 45, 1, 0, 0, 0, 1458, 1053, 216, 11, 0, 0, 0, 0, 4374, 3645, 945, 78, 1, 0, 0, 0, 0, 13122, 12393, 3888, 450, 14, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Comments

Riordan array ((1-x)/(1-3x), x^2/(1-3x)).
A skewed version of triangular array in A193723.
A202209*A007318 as infinite lower triangular matrices.

Examples

			Triangle begins:
  1
  2, 0
  6, 1, 0
  18, 5, 0, 0
  54, 21, 1, 0, 0
  162, 81, 8, 0, 0, 0
  486, 297, 45, 1, 0, 0, 0
		

Crossrefs

Cf. A000244, A025192, A081038, A183188 (antidiagonal sums).

Formula

G.f.: (1-x)/(1-3*x-y*x^2).
T(n,k) = Sum_{j, j>=0} T(n-2-j,k-1)*3^j.
T(n,k) = 3*T(n-1,k) + T(n-2,k-1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5 respectively.
Previous Showing 21-23 of 23 results.