cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A347304 a(n) = n!/(floor(n/2)!*floor(n/3)!*floor(n/6)!).

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 5040, 55440, 13860, 180180, 360360, 1081080, 2162160, 36756720, 4084080, 77597520, 155195040, 465585120, 931170240, 21416915520, 1338557220, 33463930500, 66927861000, 200783583000, 401567166000, 11645447814000, 465817912560
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2021

Keywords

Crossrefs

a(6*n) = A113424(n).

Programs

  • PARI
    a(n) = n!/((n\2)!*(n\3)!*(n\6)!); \\ Seiichi Manyama, Aug 28 2021
    
  • Python
    from math import factorial
    def A347304(n): return factorial(n)//factorial(n//2)//factorial(n//3)//factorial(n//6) # Chai Wah Wu, Aug 28 2021

Extensions

a(0)=1 prepended by Seiichi Manyama, Aug 28 2021

A351823 Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 2, 7, 6, 49, 12, 12, 301, 140, 60, 2281, 1470, 180, 120, 21211, 12642, 2940, 840, 220417, 127736, 41160, 3360, 1680, 2528569, 1527192, 455112, 70560, 15120, 32014801, 19837530, 5748120, 1234800, 75600, 30240, 442974511, 278142590, 83995560, 16687440, 1940400, 332640
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2022

Keywords

Comments

From the asymptotic estimate of A000262(n) provided by Vaclav Kotesovec we deduce that in the limit as n gets big the average number of size 2 lists is equal to 1. In other words, lim_{n->oo} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. Generally for any j >= 1, the average number of size j lists equals 1 in the limit as n -> oo.

Examples

			Triangle T(n,k) begins:
      1;
      1;
      1,     2;
      7,     6;
     49,    12,   12;
    301,   140,   60;
   2281,  1470,  180, 120;
  21211, 12642, 2940, 840;
  ...
		

Crossrefs

Column k=1 gives A113235.
T(n,floor(n/2)) gives A081125.
T(2n,n) gives A001813.
Cf. A000262 (row sums) A006152, A114329, A351825.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
         `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Feb 20 2022
  • Mathematica
    nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
Sum_{k=0..floor(n/2)} k * T(n,k) = A351825(n). - Alois P. Heinz, Feb 24 2022

A374647 a(n) = n! / floor(2n/3)!.

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 30, 210, 336, 504, 5040, 7920, 11880, 154440, 240240, 360360, 5765760, 8910720, 13366080, 253955520, 390700800, 586051200, 12893126400, 19769460480, 29654190720, 741354768000, 1133836704000, 1700755056000, 47621141568000, 72684900288000
Offset: 0

Views

Author

Clark Kimberling, Jul 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!/(Floor[2 n/3]!), {n, 0, 30}]

A374648 a(n) = n! / (floor(n/3))! - n! / (floor(n/2))!.

Original entry on oeis.org

0, 0, 0, 0, 12, 60, 240, 1680, 18480, 45360, 574560, 6320160, 19293120, 250810560, 3615131520, 10637827200, 173837664000, 2955240288000, 8874542476800, 168616307059200, 3378360124339200, 10123012406707200, 222987858828134400, 5128720753047091200
Offset: 0

Views

Author

Clark Kimberling, Jul 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!/(Floor[n/3]!) - n!/(Floor[n/2]!), {n, 0, 24}]

Formula

a(n) = A355988(n) - A081125(n). - Vaclav Kotesovec, Jul 27 2024
Previous Showing 11-14 of 14 results.