A220516 Nonnegative integers in square maze arrangement T(n,k), read by antidiagonals, n>=0, k>=0.
0, 1, 3, 8, 2, 4, 9, 7, 5, 15, 24, 10, 6, 14, 16, 25, 23, 11, 13, 17, 35, 48, 26, 22, 12, 18, 34, 36, 49, 47, 27, 21, 19, 33, 37, 63, 80, 50, 46, 28, 20, 32, 38, 62, 64, 81, 79, 51, 45, 29, 31, 39, 61, 65, 99, 120, 82, 78, 52, 44, 30, 40, 60, 66, 98, 100
Offset: 0
Examples
The first layer is [1, 2, 3] which looks like this: . 3, 1, 2, The second layer is [4, 5, 6, 7, 8] which looks like this: . . 4 . . 5, 8, 7, 6, Square array T(0,0)..T(10,10) begins: 0, 3, 4, 15, 16, 35, 36, 63, 64, 99, 100,... 1, 2, 5, 14, 17, 34, 37, 62, 65, 98, 101,... 8, 7, 6, 13, 18, 33, 38, 61, 66, 97, 102,... 9, 10, 11, 12, 19, 32, 39, 60, 67, 96, 103,... 24, 23, 22, 21, 20, 31, 40, 59, 68, 95, 104,... 25, 26, 27, 28, 29, 30, 41, 58, 69, 94, 105,... 48, 47, 46, 45, 44, 43, 42, 57, 70, 93, 106,... 49, 50, 51, 52, 53, 54, 55, 56, 71, 92, 107,... 80, 79, 78, 77, 76, 75, 74, 73, 72, 91, 108,... 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 109,... 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110,... ...
Formula
a(n) = A081344(n+1) - 1.
T(n,k) = n^2 + k , if n is odd and k<=n.
T(n,k) = n(n + 2) - k, if n is even and k<=n.
T(n,k) = k(k + 2) - n, if n is odd and n
T(n,k) = k^2 + n , if n is even and n
A093650 Natural numbers arranged in a square maze beginning 1, 2, 3, then moving right, then up, right, down, left, down, right, etc., and read by antidiagonals upwards.
1, 2, 6, 3, 5, 7, 12, 4, 8, 20, 13, 11, 9, 19, 21, 30, 14, 10, 18, 22, 42, 31, 29, 15, 17, 23, 41, 43, 56, 32, 28, 16, 24, 40, 44, 72, 57, 55, 33, 27, 25, 39, 45, 71, 73, 90, 58, 54, 34, 26, 38, 46, 70, 74, 110, 91, 89, 59, 53, 35, 37, 47, 69, 75, 109, 111
Offset: 1
Examples
a(3) = 6 because the maze begins 2 under 1, 3 under 2, 4 right of 3, 5 right of 2 and 6 right of 1. Array begins: 1 6---7 20 ... | | | | 2 5 8 19 ... | | | | 3---4 9 18 ... | | 12--11--10 17 ... | | 13--14--15--16 ... ...
Links
Extensions
More terms from Jinyuan Wang, Jun 15 2022
A213928 Natural numbers placed in table T(n,k) layer by layer. The order of placement - at the beginning 2 layers counterclockwise, next 1 layer clockwise and so on. T(n,k) read by antidiagonals.
1, 4, 2, 5, 3, 9, 16, 6, 8, 10, 25, 15, 7, 11, 17, 26, 24, 14, 12, 18, 36, 49, 27, 23, 13, 19, 35, 37, 64, 48, 28, 22, 20, 34, 38, 50, 65, 63, 47, 29, 21, 33, 39, 51, 81, 100, 66, 62, 46, 30, 32, 40, 52, 80, 82, 121, 99, 67, 61, 45, 31, 41, 53, 79, 83, 101
Offset: 1
Comments
Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.In general, let b(z) be a sequence of integer numbers. Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Natural numbers placed in table T(n,k) layer by layer. The order of placement - layer is counterclockwise, if b(z) is odd; layer is clockwise if b(z) is even. T(n,k) read by antidiagonals.For A219159 - the order of the placement - at the beginning m layers counterclockwise, next m layers clockwise and so on - b(z)=floor((z-1)/m)+1. For this sequence b(z)=z^2 mod 3.
Examples
The start of the sequence as table. The direction of the placement denotes by ">" and "v". ..........v...........v...........v >1....4...5..16..25..26..49..64..65... >2....3...6..15..24..27..48..63..66... .9....8...7..14..23..28..47..62..67... >10..11..12..13..22..29..46..61..68... >17..18..19..20..21..30..45..60..69... .36..35..34..33..32..31..44..59..70... >37..38..39..40..41..42..43..58..71... >50..51..52..53..54..55..56..57..72... .81..80..79..78..77..76..75..74..73... . . . The start of the sequence as triangle array read by rows: 1; 4,2; 5,3,9; 16,6,8,10; 25,15,7,11,17; 26,24,14,12,18,36; 49,27,23,13,19,35,37; 64,48,28,22,20,34,38,50; 65,63,47,29,21,33,39,51,81; . . .
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n if j>=i: result=((1+(-1)**(j**2%3-1))*(j**2-i+1)-(-1+(-1)**(j**2%3-1))*((j-1)**2 +i))/2 else: result=((1+(-1)**(i**2%3))*(i**2-j+1)-(-1+(-1)**(i**2%3))*((i-1)**2 +j))/2
Formula
For general case.
As table
T(n,k) = ((1+(-1)^(b(k)-1))*(k^2-n+1)-(-1+(-1)^(b(k)-1))*((k-1)^2 +n))/2, if k >= n;
T(n,k) = ((1+(-1)^b(n))*(n^2-k+1)-(-1+(-1)^b(n))*((n-1)^2 +k))/2, if n >k.
As linear sequence
a(n) = ((1+(-1)^(b(j)-1))*(j^2-i+1)-(-1+(-1)^(b(j)-1))*((j-1)^2 +i))/2, if j >= i;
a(n) = ((1+(-1)^b(i))*(i^2-j+1)-(-1+(-1)^b(i))*((i-1)^2 +j))/2, if i >j;
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
For this sequence b(z)=z^2 mod 3.
As table
T(n,k) = ((1+(-1)^(k^2 mod 3-1))*(k^2-n+1)-(-1+(-1)^(k^2 mod 3-1))*((k-1)^2 +n))/2, if k >= n;
T(n,k) = ((1+(-1)^(n^2 mod 3))*(n^2-k+1)-(-1+(-1)^(n^2 mod 3))*((n-1)^2 +k))/2, if n >k.
As linear sequence
a(n) = ((1+(-1)^(j^2 mod 3-1))*(j^2-i+1)-(-1+(-1)^(j^2 mod 3-1))*((j-1)^2 +i))/2, if j >= i;
a(n) = ((1+(-1)^(i^2 mod 3))*(i^2-j+1)-(-1+(-1)^(i^2 mod 3))*((i-1)^2 +j))/2, if i >j;
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
A214929 A209293 as table read layer by layer - layer clockwise, layer counterclockwise and so on.
1, 3, 4, 2, 5, 9, 14, 7, 6, 10, 11, 20, 23, 17, 12, 8, 13, 19, 26, 34, 43, 30, 27, 16, 15, 21, 22, 35, 38, 53, 58, 48, 39, 31, 24, 18, 25, 33, 42, 52, 63, 75, 88, 69, 64, 47, 44, 29, 28, 36, 37, 54, 57, 76, 81, 102, 109, 95, 82, 70, 59, 49, 40, 32, 41, 51, 62
Offset: 1
Keywords
Comments
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Table read by boustrophedonic ("ox-plowing") method. Let m be natural number. The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2);
. . .
T(1,2*m+1), T(2,2*m+1), ... T(2*m,2*m+1), T(2*m+1,2*m+1), T(2*m+1,2*m), ... T(2*m+1,1);
T(2*m,1), T(2*m,2), ... T(2*m,2*m-1), T(2*m,2*m), T(2*m-1,2*m), ... T(1,2*m);
. . .
The first row is layer read clockwise, the second row is layer counterclockwise.
Examples
The start of the sequence as table: 1....2...5...8..13..18... 3....4...9..12..19..24... 6....7..14..17..26..31... 10..11..20..23..34..39... 15..16..27..30..43..48... 21..22..35..38..53..58... . . . The start of the sequence as triangle array read by rows: 1; 3,4,2; 5,9,14,7,6; 10,11,20,23,17,12,8; 13,19,26,34,43,30,27,16,15; 21,22,35,38,53,58,48,39,31,24,18; . . . Row number r contains 2*r-1 numbers.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Python
t=int((math.sqrt(n-1)))+1 i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1) j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2) m1=int((i+j)/2)+int(i/2)*(-1)**(2*i+j-1) m2=int((i+j+1)/2)+int(i/2)*(-1)**(2*i+j-2) result=(m1+m2-1)*(m1+m2-2)/2+m1
Formula
As table
T(n,k) = n*n/2+4*(floor((k-1)/2)+1)*n+ceiling((k-1)^2/2), n,k > 0.
As linear sequence
a(n)= (m1+m2-1)*(m1+m2-2)/2+m1, where
m1=floor((i+j)/2) + floor(i/2)*(-1)^(2*i+j-1), m2=int((i+j+1)/2)+int(i/2)*(-1)^(2*i+j-2),
where i=(t mod 2)*min(t; n-(t-1)^2) + (t+1 mod 2)*min(t; t^2-n+1), j=(t mod 2)*min(t; t^2-n+1) + (t+1 mod 2)*min(t; n-(t-1)^2), t=floor(sqrt(n-1))+1.
A363376 Determinant of the n X n matrix formed by placing 1..n^2 in L-shaped gnomons in alternating directions.
1, -5, 78, -1200, 19680, -351360, 6854400, -145797120, 3367526400, -84072038400, 2258332876800, -64990937088000, 1995834890649600, -65167516237824000, 2254974602969088000, -82443156980760576000, 3176032637949050880000, -128603097714237898752000, 5460911310769351557120000
Offset: 1
Keywords
Comments
The matrix is the upper-left n X n part of the square arrangement in A081344.
Conjecture: a(n) has trailing zeros for n > 3. - Stefano Spezia, May 31 2023
The conjecture is true and its proof follows easily from Detlef Meya's formula. - Stefano Spezia, Apr 20 2024
Examples
| 1----2 9---10 25 | | | | | | | | 4----3 8 11 24 | | | | | | | a(5) = | 5----6----7 12 23 | = 19680. | | | | | 16---15---14---13 22 | | | | | | 17---18---19---20---21 |
Links
- Stefano Spezia, Table of n, a(n) for n = 1..400
- Nicolay Avilov, Illustration of a(1)-a(5)
Programs
-
Mathematica
a={}; For[n=1, n<=19, n++,k=i=j=1; M[i,j]=k++; For[h=1, h
Stefano Spezia, May 31 2023 *) a={1};For[n=2,n<20,n++,AppendTo[a,(-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*n!]];a (* Detlef Meya, Jun 11 2023 *)
Formula
a(1) = 1, for a > 1: a(n) = (-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*(n!). - Detlef Meya, Jun 11 2023
E.g.f.: x*(2 + 7*x + 20*x^2 + 12*x^3)/(2*(1 + 2*x)^3). - Stefano Spezia, Apr 20 2024
Extensions
a(16)-a(19) from Stefano Spezia, May 31 2023
A216253 A213196 as table read layer by layer - layer clockwise, layer counterclockwise and so on.
1, 2, 5, 4, 3, 7, 10, 8, 6, 12, 14, 23, 20, 17, 9, 11, 13, 16, 26, 38, 43, 39, 21, 24, 15, 18, 27, 31, 35, 48, 63, 58, 42, 30, 25, 22, 19, 29, 34, 57, 53, 69, 76, 70, 64, 49, 36, 32, 28, 40, 44, 59, 54, 82, 88, 109, 102, 95, 75, 81, 52, 47, 33, 37, 41, 46, 62
Offset: 1
Comments
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Table read by boustrophedonic ("ox-plowing") method.
Let m be natural number. The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2);
. . .
T(1,2*m+1), T(2,2*m+1), ... T(2*m,2*m+1), T(2*m+1,2*m+1), T(2*m+1,2*m), ... T(2*m+1,1);
T(2*m,1), T(2*m,2), ... T(2*m,2*m-1), T(2*m,2*m), T(2*m-1,2*m), ... T(1,2*m);
. . .
The first row is layer read clockwise, the second row is layer counterclockwise.
Examples
The start of the sequence as table: 1....4...3..11..13... 2....5...7...9..16... 6....8..10..17..26... 12..14..23..20..38... 15..24..21..39..43... . . . The start of the sequence as triangular array read by rows: 1; 2,5,4; 3,7,10,8,6; 12,14,23,20,17,9,11; 13,16,26,38,43,39,21,24,15; . . . Row number r contains 2*r-1 numbers.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Python
t=int((math.sqrt(n-1)))+1 i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1) j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2) m1=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4 m2=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4 m=(m1+m2-1)*(m1+m2-2)/2+m1
Formula
a(n) = (m1+m2-1)*(m1+m2-2)/2+m1, where m1=(3*i+j-1-(-1)^i+(i+j-2)*(-1)^(i+j))/4, m2=((1+(-1)^i)*((1+(-1)^j)*2*int((j+2)/4)-(-1+(-1)^j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)^i)*((1+(-1)^j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)^j)*(1+2*int(j/4))))/4, i=(t mod 2)*min(t; n-(t-1)^2) + (t+1 mod 2)*min(t; t^2-n+1), j=(t mod 2)*min(t; t^2-n+1) + (t+1 mod 2)*min(t; n-(t-1)^2), t=floor(sqrt(n-1))+1.
A363460 a(n) is the permanent of the n X n matrix formed by placing 1..n^2 in L-shaped gnomons in alternating directions.
1, 1, 11, 556, 74964, 21700112, 11500685084, 10057140949968, 13496937368200000, 26331147893897760544, 71606290155732170272320, 262516365211410942628577408, 1262517559940020030446967822592, 7786463232979127181938238723356160, 60414239829783205320232261233394491136
Offset: 0
Keywords
Comments
Examples
a(5) = 21700112 is the permanent of the 5 X 5 matrix | 1----2 9---10 25 | | | | | | | | 4----3 8 11 24 | | | | | | | | 5----6----7 12 23 | | | | | | 16---15---14---13 22 | | | | | | 17---18---19---20---21 |
Crossrefs
Programs
-
Mathematica
a={1}; For[n=1, n<=14, n++,k=i=j=1; M[i,j]=k++; For[h=1, h
Comments