cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 96 results. Next

A374064 Expansion of Product_{k>=1} 1 / (1 + x^(3*k-1)).

Original entry on oeis.org

1, 0, -1, 0, 1, -1, -1, 1, 0, -1, 1, 0, -1, 1, 0, -2, 2, 1, -3, 1, 3, -3, 0, 3, -3, -1, 4, -3, -1, 5, -3, -3, 7, -3, -5, 7, -1, -7, 8, 0, -8, 8, 1, -11, 10, 3, -14, 9, 8, -17, 8, 10, -18, 6, 14, -22, 6, 19, -24, 1, 26, -26, -3, 30, -25, -9, 37, -27, -13, 42, -26, -23, 51, -25, -31, 56
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + x^(3 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[DivisorSum[k, (-1)^(k/#) # &, Mod[#, 3] == 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} A262928(k) * a(n-k).
a(n) = Sum_{k=0..n} A081362(k) * A132463(n-k).
a(n) = Sum_{k=0..n} A109389(k) * A261612(n-k).

A374065 Expansion of Product_{k>=1} 1 / (1 + x^(3*k-2)).

Original entry on oeis.org

1, -1, 1, -1, 0, 0, 0, -1, 2, -2, 1, 0, -1, 0, 2, -3, 3, -1, -1, 1, 1, -4, 5, -3, 0, 2, 0, -4, 7, -6, 1, 3, -2, -3, 9, -10, 4, 3, -5, -1, 11, -15, 10, 1, -8, 3, 10, -20, 17, -3, -10, 9, 7, -24, 26, -10, -10, 15, 2, -27, 37, -21, -8, 22, -6, -28, 49, -36, -2, 30, -19, -24, 61, -56, 10, 35
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + x^(3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[DivisorSum[k, (-1)^(k/#) # &, Mod[#, 3] == 1 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} A261612(k) * a(n-k).
a(n) = Sum_{k=0..n} A081362(k) * A132462(n-k).
a(n) = Sum_{k=0..n} A109389(k) * A262928(n-k).

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A260875 Square array read by ascending antidiagonals: number of m-shape complementary Bell numbers.

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -1, 0, -1, 1, -1, 2, 1, 1, 1, -1, 9, -1, 1, -1, 1, -1, 34, -197, -43, -2, 1, 1, -1, 125, -5281, 6841, 254, -9, -1, 1, -1, 461, -123124, 2185429, -254801, 4157, -9, 2, 1, -1, 1715, -2840293, 465693001, -1854147586, -3000807, -70981, 50, -2
Offset: 1

Views

Author

Peter Luschny, Aug 09 2015

Keywords

Comments

A set partition of m-shape is a partition of a set with cardinality m*n for some n >= 0 such that the sizes of the blocks are m times the parts of the integer partitions of n.
M-complementary Bell numbers count the m-shape set partitions which have even length minus the number of such partitions which have odd length.
If m=0 all possible sizes are zero. Thus in this case the complementary Bell numbers count the integer partitions of n into an even number of parts minus the number of integer partitions of n into an odd number of parts (A081362).
If m=1 the set is {1,2,...,n} and the complementary Bell numbers count the set partitions which have even length minus the set partitions which have odd length (A000587).
If m=2 the set is {1,2,...,2n} and the complementary Bell numbers count the set partitions with even blocks which have even length minus the number of partitions with even blocks which have odd length (A260884).

Examples

			[ n ] [ 0   1   2      3        4            5              6]
[ m ] --------------------------------------------------------
[ 0 ] [ 1, -1,  0,    -1,       1,          -1,             1] A081362
[ 1 ] [ 1, -1,  0,     1,       1,          -2,            -9] A000587
[ 2 ] [ 1, -1,  2,    -1,     -43,         254,          4157] A260884
[ 3 ] [ 1, -1,  9,  -197,    6841,     -254801,      -3000807]
[ 4 ] [ 1, -1, 34, -5281, 2185429, -1854147586, 2755045819549]
      A010763,
For example the number of set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 84, 280 respectively. Thus A(3,3) = -1 + 84 - 280 = -197.
Formatted as a triangle:
[1]
[1, -1]
[1, -1,   0]
[1, -1,   0,    -1]
[1, -1,   2,     1,    1]
[1, -1,   9,    -1,    1,  -1]
[1, -1,  34,  -197,  -43,  -2,  1]
[1, -1, 125, -5281, 6841, 254, -9, -1]
		

Crossrefs

Programs

  • Sage
    def A260875(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return sum((-1)^len(s)*SetPartitions(sum(s),s).cardinality() for s in shapes)
    for m in (0..4): print([A260875(m,n) for n in (0..6)])

A303130 Expansion of Product_{n>=1} (1 + (9*x)^n)^(-1/3).

Original entry on oeis.org

1, -3, -9, -288, 459, -19278, -1539, -1265301, 10734525, -147277926, 520204923, -7511358663, 88687160577, -668191863951, 5357547144702, -87542760890124, 967961569696722, -5115624735401361, 46065749188891275, -430898393089547667, 6203508335817169257
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = -9^n.

Crossrefs

Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(-1/b): A081362 (b=1), A298993 (b=2), this sequence (b=3), A303131 (b=4), A303132 (b=5).
Cf. A303074.

Programs

  • Mathematica
    CoefficientList[Series[(2/QPochhammer[-1, 9*x])^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, (1 + (9*x)^k)^(-1/3))) \\ Altug Alkan, Apr 20 2018

Formula

a(n) ~ (-1)^n * exp(Pi*sqrt(n/18)) * 3^(2*n - 1/2) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Apr 20 2018

A330373 Sum of all parts of all self-conjugate partitions of n.

Original entry on oeis.org

0, 1, 0, 3, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 60, 80, 85, 90, 114, 140, 168, 176, 207, 264, 300, 312, 378, 448, 493, 540, 620, 736, 825, 884, 1015, 1188, 1295, 1406, 1599, 1840, 2009, 2184, 2451, 2772, 3060, 3312, 3666, 4176, 4557, 4900, 5457, 6084, 6625, 7182, 7920, 8792, 9576, 10324, 11328, 12540
Offset: 0

Views

Author

Omar E. Pol, Dec 17 2019

Keywords

Comments

a(n) is the sum of all parts of all partitions of n whose Ferrers diagrams are symmetric.
The k-th part of a partition equals the number of parts >= k of its conjugate partition. Hence, the k-th part of a self-conjugate partition equals the number of parts >= k.
The k-th rank of a partition is the k-th part minus the number of parts >= k. Thus all ranks of a conjugate-partitions are zero. Therefore, a(n) is also the sum of all parts of all partitions of n whose n ranks are zero, n >= 1. For more information about the k-th ranks see A208478.

Examples

			For n = 10 there are only two partitions of 10 whose Ferrers diagram are symmetric, they are [5, 2, 1, 1, 1] and [4, 3, 2, 1] as shown below:
  * * * * *
  * *
  *
  *
  *
            * * * *
            * * *
            * *
            *
The sum of all parts of these partitions is 5 + 2 + 1 + 1 + 1 + 4 + 3 + 2 + 1 = 20, so a(10) = 20.
Also, in accordance with the first formula; a(10) = 2*10 = 20.
		

Crossrefs

Row sums of A330372.
For "k-th rank" of a partition see also: A181187, A208478, A208479, A208482, A208483, A330370.

Programs

  • PARI
    seq(n)={Vec(deriv(exp(sum(k=1, n, x^k/(k*(1 - (-x)^k)) + O(x*x^n)))), -(n+1))} \\ Andrew Howroyd, Dec 31 2019

Formula

a(n) = n*A000700(n).
a(n) = abs(n*A081362(n)).
a(n) = abs(A235324(n)), n >= 1.

A374058 Expansion of Product_{k>=1} (1 - x^(3*k-2)) * (1 - x^(3*k)).

Original entry on oeis.org

1, -1, 0, -1, 0, 1, -1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, -1, 0, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 1, 1, -1, 0, 0, -1, 2, 0, -1, 1, 0, -1, 2, -2, 0, 1, -1, 0, 1, -1, 0, 1, -2, 1, 1, -2, 1, 0, -2, 2, 0, -2, 2, -1, 0, 2, -1, -1, 1, -1, -1, 3, -2, 0, 2, -2, 1, 2, -3, 1, 1, -2, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(3 k - 2)) (1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Plus @@ Select[Divisors[k], Mod[#, 3] != 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A082051(k) * a(n-k).
a(0) = 1; a(n) = -Sum_{k=1..n} A035360(k) * a(n-k).
a(n) = Sum_{k=0..n} A010815(k) * A035386(n-k).

A374060 Expansion of Product_{k>=1} (1 - x^(3*k-1)) * (1 - x^(3*k)).

Original entry on oeis.org

1, 0, -1, -1, 0, 0, -1, 1, 1, 0, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, -1, -1, 0, -1, 0, 1, 0, -1, 1, 0, -1, 1, 1, -1, 0, 1, 0, 1, 1, -1, 0, 1, -1, -1, 2, 0, -1, 1, 0, -1, 1, 0, -2, 0, 0, -1, 1, 1, -2, 0, 1, -2, 0, 2, -1, -1, 1, -1, -1, 2, -1, -1, 2, 0, -1, 2, 1, -2, 1, 0, -2, 2, 1, -2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(3 k - 1)) (1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Plus @@ Select[Divisors[k], Mod[#, 3] != 1 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A082050(k) * a(n-k).
a(0) = 1; a(n) = -Sum_{k=1..n} A035361(k) * a(n-k).
a(n) = Sum_{k=0..n} A010815(k) * A035382(n-k).

A246582 G.f.: x^((k^2+k)/2)/(mul(1-x^i,i=1..k)*mul(1+x^r,r=1..oo)) with k = 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, -1, 1, -2, 1, -3, 1, -4, 2, -5, 3, -6, 5, -7, 7, -8, 10, -10, 13, -12, 17, -15, 21, -19, 26, -24, 31, -30, 38, -38, 45, -47, 54, -58, 64, -71, 77, -86, 91, -103, 109, -124, 129, -147, 154, -174, 182, -205, 216, -241, 254, -282, 300, -330, 351, -384, 412, -447, 480, -519, 560, -602, 649, -696, 753, -805
Offset: 0

Views

Author

N. J. A. Sloane, Aug 31 2014

Keywords

References

  • Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=3.

Crossrefs

For k=0 and 1 we get A081362, A027349 (apart from signs). Cf. A246581, A246583.

Programs

  • Maple
    fSp:=proc(k) local a,i,r;
    a:=x^((k^2+k)/2)/mul(1-x^i,i=1..k);
    a:=a/mul(1+x^r,r=1..101);
    series(a,x,101);
    seriestolist(%);
    end;
    fSp(3);
  • Mathematica
    nmax = 100; CoefficientList[Series[x^6/((1-x)*(1-x^2)*(1-x^3)) * Product[1/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2016 *)

Formula

a(n) ~ (-1)^n * 3^(1/4) * exp(sqrt(n/6)*Pi) / (2^(13/4)*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 12 2016

A246583 G.f.: x^((k^2+k)/2)/(mul(1-x^i,i=1..k)*mul(1+x^r,r=1..oo)) with k = 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, -1, 2, -2, 3, -4, 3, -6, 5, -9, 6, -12, 10, -16, 13, -20, 20, -26, 26, -32, 37, -41, 47, -51, 63, -65, 78, -81, 101, -103, 123, -128, 155, -161, 187, -199, 232, -247, 278, -302, 341, -371, 407, -449, 495, -545, 589, -654, 711, -786, 843, -936, 1011, -1116, 1194, -1320, 1423, -1563, 1674
Offset: 0

Views

Author

N. J. A. Sloane, Aug 31 2014

Keywords

References

  • Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=4.

Crossrefs

For k=0 and 1 we get A081362, A027349 (apart from signs). Cf. A246581, A246582.

Programs

  • Maple
    fSp:=proc(k) local a,i,r;
    a:=x^((k^2+k)/2)/mul(1-x^i,i=1..k);
    a:=a/mul(1+x^r,r=1..101);
    series(a,x,101);
    seriestolist(%);
    end;
    fSp(4);
  • Mathematica
    nmax = 100; CoefficientList[Series[x^10/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2016 *)

Formula

a(n) ~ (-1)^n * 3^(3/4) * n^(1/4) * exp(sqrt(n/6)*Pi) / (2^(15/4)*Pi^2). - Vaclav Kotesovec, Mar 12 2016
Previous Showing 41-50 of 96 results. Next