cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A322873 Ordinal transform of A300721, which is Möbius transform of A060681.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 1, 4, 3, 4, 1, 4, 1, 5, 2, 5, 1, 6, 2, 6, 2, 3, 1, 7, 1, 1, 2, 7, 2, 4, 1, 8, 3, 2, 1, 5, 1, 3, 3, 9, 1, 3, 2, 8, 4, 4, 1, 6, 2, 5, 3, 10, 1, 4, 1, 11, 1, 5, 3, 4, 1, 6, 2, 7, 1, 6, 1, 12, 2, 4, 1, 7, 1, 7, 4, 13, 1, 8, 1, 14, 2, 1, 1, 5, 2, 3, 3, 15, 1, 8, 1, 8, 2, 2, 1, 9, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A060681[n_] := n - n/FactorInteger[n][[1, 1]];
    A300721[n_] := Sum[MoebiusMu[n/d] A060681[d], {d, Divisors[n]}];
    b[_] = 1;
    a[n_] := a[n] = With[{t = A300721[n]}, b[t]++];
    a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1]))));
    A300721(n) = sumdiv(n, d, moebius(n/d)*A060681(d));
    v322873 = ordinal_transform(vector(up_to,n,A300721(n)));
    A322873(n) = v322873[n];

A330747 Number of values of k, 1 <= k <= n, with A049559(k) = A049559(n), where A049559(n) = gcd(n - 1, phi(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 7, 1, 8, 3, 9, 1, 10, 1, 11, 2, 12, 1, 13, 3, 14, 4, 1, 1, 15, 1, 16, 4, 17, 5, 18, 1, 19, 6, 20, 1, 21, 1, 22, 5, 23, 1, 24, 2, 25, 7, 2, 1, 26, 8, 27, 6, 28, 1, 29, 1, 30, 9, 31, 2, 1, 1, 32, 7, 3, 1, 33, 1, 34, 10, 4, 8, 35, 1, 36, 11, 37, 1, 38, 9, 39, 12, 40, 1, 41, 2, 42, 10, 43, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A049559.

Crossrefs

Programs

  • Mathematica
    b[_] = 0;
    a[n_] := With[{t = GCD[n-1, EulerPhi[n]]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 27 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A049559(n) = gcd(n-1, eulerphi(n));
    v330747 = ordinal_transform(vector(up_to, n, A049559(n)));
    A330747(n) = v330747[n];

A303753 Ordinal transform of cototient (A051953).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 1, 1, 5, 1, 6, 2, 1, 3, 7, 1, 8, 2, 1, 3, 9, 1, 1, 1, 2, 2, 10, 1, 11, 3, 1, 1, 1, 1, 12, 1, 1, 2, 13, 1, 14, 3, 1, 4, 15, 1, 2, 2, 1, 1, 16, 1, 2, 2, 2, 3, 17, 1, 18, 3, 1, 4, 1, 1, 19, 2, 1, 2, 20, 1, 21, 1, 1, 1, 2, 1, 22, 2, 2, 1, 23, 1, 3, 2, 1, 3, 24, 1, 2, 4, 1, 5, 1, 1, 25, 1, 1, 2, 26, 1, 27, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Number of values of k, 1 <= k <= n, with A051953(k) = A051953(n).

Crossrefs

Cf. A051953, A065385 (gives a subset of the positions of ones).
Cf. also A081373, A303754.

Programs

  • Maple
    b:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= numtheory[phi](n)-n; b(t):= b(t)+1
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 30 2018
  • Mathematica
    b[_] = 0;
    a[n_] := a[n] = With[{t = EulerPhi[n]-n}, b[t] = b[t]+1];
    Array[a, 120] (* Jean-François Alcover, Dec 19 2021, after Alois P. Heinz *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A051953(n) = (n - eulerphi(n));
    v303753 = ordinal_transform(vector(up_to,n,A051953(n)));
    A303753(n) = v303753[n];

Formula

For all n >= 1, a(A000040(n)) = n.

A303754 a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A303753(k) = A303753(n), where A303753 is ordinal transform of cototient, A051953.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 6, 1, 3, 7, 2, 1, 8, 1, 4, 9, 3, 1, 10, 11, 12, 5, 6, 1, 13, 1, 4, 14, 15, 16, 17, 1, 18, 19, 7, 1, 20, 1, 5, 21, 2, 1, 22, 8, 9, 23, 24, 1, 25, 10, 11, 12, 6, 1, 26, 1, 7, 27, 3, 28, 29, 1, 13, 30, 14, 1, 31, 1, 32, 33, 34, 15, 35, 1, 16, 17, 36, 1, 37, 8, 18, 38, 9, 1, 39, 19, 4, 40, 2, 41, 42, 1, 43, 44, 20, 1, 45, 1, 21
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Ordinal transform of f, where f(1) = 0 and f(n) = A303753(n) for n > 1.

Crossrefs

Cf. also A081373, A303757.

Programs

  • Mathematica
    b[_] = 0;
    A303753[n_] := A303753[n] = With[{t = EulerPhi[n] - n}, b[t] = b[t]+1];
    f[n_] := If[n == 1, 0, A303753[n]];
    Clear[b]; b[_] = 0;
    a[n_] := a[n] = With[{t = f[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A051953(n) = (n - eulerphi(n));
    v303753 = ordinal_transform(vector(up_to,n,A051953(n)));
    Aux303754(n) = if(1==n,0,v303753[n]);
    v303754 = ordinal_transform(vector(up_to,n,Aux303754(n)));
    A303754(n) = v303754[n];

A303755 Ordinal transform of A289625.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 1, 3, 1, 3, 2, 1, 1, 4, 1, 2, 3, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 2, 2, 2, 1, 6, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 7, 1, 2, 2, 2, 1, 1, 1, 4, 3, 3, 1, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Equally, ordinal transform of A289626.

Crossrefs

Cf. also A081373, A303756.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };
    v303755 = ordinal_transform(vector(up_to,n,A289625(n)));
    A303755(n) = v303755[n];

A322874 Ordinal transform of A007431, which is Möbius transform of Euler phi.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 1, 1, 1, 3, 1, 4, 1, 4, 2, 2, 1, 5, 1, 3, 2, 6, 1, 2, 1, 7, 1, 3, 1, 8, 1, 1, 2, 9, 2, 3, 1, 10, 2, 1, 1, 11, 1, 3, 2, 12, 1, 4, 1, 13, 3, 3, 1, 14, 2, 1, 2, 15, 1, 4, 1, 16, 1, 2, 1, 17, 1, 4, 2, 18, 1, 2, 1, 19, 3, 3, 2, 20, 1, 3, 2, 21, 1, 4, 3, 22, 3, 1, 1, 23, 1, 3, 2, 24, 2, 3, 1, 25, 3, 4, 1, 26, 1, 1, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A007431[n_] := Sum[EulerPhi[d] MoebiusMu[n/d], {d, Divisors[n]}];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A007431[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A007431(n) = sumdiv(n,d,moebius(n/d)*eulerphi(d));
    v322874 = ordinal_transform(vector(up_to,n,A007431(n)));
    A322874(n) = v322874[n];

A330739 Number of values of k, 1 <= k <= n, with A047994(k) = A047994(n), where A047994 is unitary totient function uphi(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 2, 3, 2, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 1, 2, 2, 3, 1, 3, 4, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 5, 2, 2, 1, 2, 2, 2, 3, 3, 1, 6, 1, 4, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 1, 4, 5, 1, 2, 8, 1, 3, 1, 3, 1, 5, 1, 3, 2, 2, 1, 3, 2, 2, 4, 2, 3, 1, 1, 6, 2, 4, 1, 4, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A047994.

Crossrefs

Cf. A047994.
Cf. also A081373 (ordinal transform of Euler totient function phi), A331177.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v330739 = ordinal_transform(vector(up_to, n, A047994(n)));
    A330739(n) = v330739[n];

A331178 Number of values of k, 1 <= k <= n, with A023900(k) = A023900(n), where A023900 is Dirichlet inverse of Euler totient function phi.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 6, 2, 4, 1, 3, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 2, 3, 2, 1, 2, 1, 5, 4, 2, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 2, 1, 2, 9, 1, 4, 2, 6, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A023900.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    v331178 = ordinal_transform(vector(up_to, n, A023900(n)));
    A331178(n) = v331178[n];

A331182 Number of values of k, 1 <= k <= n, with A083254(k) = A083254(n), where A083254(n) = 2*phi(n) - n.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 3, 4, 1, 1, 1, 2, 3, 4, 1, 1, 2, 5, 2, 3, 1, 1, 1, 5, 1, 6, 1, 1, 1, 7, 3, 2, 1, 1, 1, 4, 4, 8, 1, 1, 2, 1, 2, 5, 1, 2, 1, 3, 3, 9, 1, 1, 1, 10, 4, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 11, 2, 7, 1, 1, 1, 2, 2, 12, 1, 1, 2, 13, 2, 4, 1, 1, 1, 8, 3, 14, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A083254.

Crossrefs

Programs

  • Mathematica
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = 2 EulerPhi[n] - n}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A083254(n) = (2*eulerphi(n)-n);
    v331182 = ordinal_transform(vector(up_to,n,A083254(n)));
    A331182(n) = v331182[n];

A069823 Nonprime numbers k for which there is no x < k such that phi(x) = phi(k).

Original entry on oeis.org

1, 15, 25, 35, 51, 65, 69, 81, 85, 87, 121, 123, 129, 141, 143, 159, 161, 177, 185, 187, 203, 213, 235, 247, 249, 253, 255, 265, 267, 275, 289, 299, 301, 309, 321, 323, 339, 341, 343, 361, 393, 403, 415, 425, 447, 485, 489, 501, 519, 527, 529, 535, 537, 551
Offset: 1

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If p is prime there is no x < p such that phi(x) = phi(p) = p-1 since phi(x) < p-1.
Nonprime numbers k such that A081373(k)=1; i.e., the number of numbers not exceeding k, and with identical phi value to that of k, equals one. - Labos Elemer, Mar 24 2003
For 1 < n, if a(n) is squarefree, then phi(a(n)) is nonsquarefree. The converse is also true: for 1 < n, if phi(a(n)) is squarefree then a(n) is nonsquarefree. - Torlach Rush, Dec 26 2017

Examples

			k=25, a nonprime; phi values for k <= 25 are {1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20}; no phi(k) except phi(25) equals 20, A081373(25)=1, so 25 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x] fc[x_] := Count[Table[f[j]-f[x], {j, 1, x}], 0] t1=Flatten[Position[Table[fc[w], {w, 1, 1000}], 1]] t2=Flatten[Position[PrimeQ[t1], False]] Part[t1, t2]
    (* Second program: *)
    Union@ Select[Values[PositionIndex@ Array[EulerPhi, 600]][[All, 1]], ! PrimeQ@ # &] (* Michael De Vlieger, Dec 31 2017 *)
  • PARI
    for(s=1,600,if((1-isprime(s))*abs(prod(i=1,s-1,eulerphi(i)-eulerphi(s)))>0, print1(s,",")))
Previous Showing 11-20 of 28 results. Next