cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A143683 Pascal-(1,8,1) array.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 19, 19, 1, 1, 28, 118, 28, 1, 1, 37, 298, 298, 37, 1, 1, 46, 559, 1540, 559, 46, 1, 1, 55, 901, 4483, 4483, 901, 55, 1, 1, 64, 1324, 9856, 21286, 9856, 1324, 64, 1, 1, 73, 1828, 18388, 67006, 67006, 18388, 1828, 73, 1, 1, 82, 2413, 30808, 164242, 304300, 164242, 30808, 2413, 82, 1
Offset: 0

Views

Author

Paul Barry, Aug 28 2008

Keywords

Examples

			Square array begins as:
  1,  1,    1,     1,      1,       1,        1, ... A000012;
  1, 10,   19,    28,     37,      46,       55, ... A017173;
  1, 19,  118,   298,    559,     901,     1324, ...
  1, 28,  298,  1540,   4483,    9856,    18388, ...
  1, 37,  559,  4483,  21286,   67006,   164242, ...
  1, 46,  901,  9856,  67006,  304300,  1004590, ...
  1, 55, 1324, 18388, 164242, 1004590,  4443580, ...
Antidiagonal triangle begins as:
  1;
  1,  1;
  1, 10,   1;
  1, 19,  19,    1;
  1, 28, 118,   28,    1;
  1, 37, 298,  298,   37,   1;
  1, 46, 559, 1540,  559,  46,  1;
  1, 55, 901, 4483, 4483, 901, 55, 1;
		

Crossrefs

Cf.Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7).

Programs

  • Haskell
    a143683 n k = a143683_tabl !! n !! k
    a143683_row n = a143683_tabl !! n
    a143683_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) (map (* 8) ([0] ++ us ++ [0])) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A143683:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A143683(n,k,8): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 9], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 9).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021

Formula

Square array: T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 8*T(n-1, k-1) + T(n-1, k).
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*9^j.
Rows are the expansions of (1+8*x)^k/(1-x)^(k+1).
Riordan array (1/(1-x), x*(1+8*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 9). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(9*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 18*x + 81*x^2/2) = 1 + 19*x + 118*x^2/2! + 298*x^3/3! + 559*x^4/4! + 901*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A003683(n+1). - G. C. Greubel, May 27 2021

A143685 Pascal-(1,9,1) array.

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 1, 21, 21, 1, 1, 31, 141, 31, 1, 1, 41, 361, 361, 41, 1, 1, 51, 681, 1991, 681, 51, 1, 1, 61, 1101, 5921, 5921, 1101, 61, 1, 1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1, 1, 81, 2241, 24681, 96201, 96201, 24681, 2241, 81, 1, 1, 91, 2961, 41511, 239241, 460251, 239241, 41511, 2961, 91, 1
Offset: 0

Views

Author

Paul Barry, Aug 28 2008

Keywords

Examples

			Square array begins as:
  1,  1,    1,     1,      1,       1,        1, ... A000012;
  1, 11,   21,    31,     41,      51,       61, ... A017281;
  1, 21,  141,   361,    681,    1101,     1621, ...
  1, 31,  361,  1991,   5921,   13151,    24681, ...
  1, 41,  681,  5921,  29761,   96201,   239241, ...
  1, 51, 1101, 13151,  96201,  460251,  1565301, ...
  1, 61, 1621, 24681, 239241, 1565301,  7272861, ...
Antidiagonal triangle begins as:
  1;
  1,  1;
  1, 11,    1;
  1, 21,   21,     1;
  1, 31,  141,    31,     1;
  1, 41,  361,   361,    41,     1;
  1, 51,  681,  1991,   681,    51,    1;
  1, 61, 1101,  5921,  5921,  1101,   61,  1;
  1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1;
		

Crossrefs

Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8), this sequence (m = 9).

Programs

  • Magma
    A143685:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A143685(n,k,9): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 10], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 10).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021

Formula

Square array: T(n, k) = T(n, k-1) + 9*T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(0, k) = 1.
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*10^j.
Riordan array (1/(1-x), x*(1+9*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 10). - Jean-François Alcover, May 24 2013
Sum_{k=0..n} T(n, k) = A002534(n+1). - G. C. Greubel, May 29 2021

A174346 Triangle T(n, k) = (binomial(n-1, k-1)*binomial(n, k-1)/k) * ( 3^(k-1) if floor(n/2) >= k, otherwise 3^(n-k) ), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 18, 18, 1, 1, 30, 180, 30, 1, 1, 45, 450, 450, 45, 1, 1, 63, 945, 4725, 945, 63, 1, 1, 84, 1764, 13230, 13230, 1764, 84, 1, 1, 108, 3024, 31752, 142884, 31752, 3024, 108, 1, 1, 135, 4860, 68040, 428652, 428652, 68040, 4860, 135, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 16 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   9,    1;
  1,  18,   18,     1;
  1,  30,  180,    30,      1;
  1,  45,  450,   450,     45,      1;
  1,  63,  945,  4725,    945,     63,     1;
  1,  84, 1764, 13230,  13230,   1764,    84,    1;
  1, 108, 3024, 31752, 142884,  31752,  3024,  108,   1;
  1, 135, 4860, 68040, 428652, 428652, 68040, 4860, 135, 1;
		

Crossrefs

Cf. A081582.

Programs

  • Magma
    function T(n,k)
      if Floor(n/2) gt k-1 then return (1/n)*Binomial(n,k)*Binomial(n,k-1)*3^(k-1);
      else return (1/n)*Binomial(n,k)*Binomial(n,k-1)*3^(n-k);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 26 2021
    
  • Mathematica
    T[n_,k_]:= (Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>k-1, 3^(k-1), 3^(n-k)];
    Table[T[n,k], {n,12}, {k,n}]//Flatten
  • Sage
    def A174346(n,k): return (1/n)*binomial(n,k)*binomial(n,k-1)*( 3^(k-1) if ((n//2)>k-1) else 3^(n-k) )
    flatten([[A174346(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 26 2021

Formula

T(n, k) = (binomial(n-1, k-1)*binomial(n, k-1)/k) * ( 3^(k-1) if floor(n/2) >= k, otherwise 3^(n-k) ).
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Nov 26 2021
Previous Showing 11-13 of 13 results.