A240767
Numbers n such that n^k + (n-1)^k + ... + 3^k + 2^k is prime for some natural number k.
Original entry on oeis.org
2, 3, 4, 7, 8, 11, 12, 16
Offset: 1
2^k is prime for at least one k (and only one k in this instance; k = 1). Thus, 2 is a member of this sequence.
3^k+2^k is prime for at least one k (see A082101). Thus, 3 is a member of this sequence.
-
a(n)=for(k=1,4000,if(ispseudoprime(sum(i=2,n,i^k)),return(k)))
n=1; while(n<200,if(a(n),print(a(n)));n+=1)
A386618
Primes of the form 2^k + 13^k.
Original entry on oeis.org
2, 173, 815730977
Offset: 1
-
[a: n in [0..200] | IsPrime(a) where a is 13^n+2^n ];
-
Select[Table[2^n+13^n,{n,0,600}],PrimeQ]
A094316
Primes p for which 2^j+p^j is also prime for j in {0,2,8,512}.
Original entry on oeis.org
13, 4133, 1831343, 2320583, 3828673, 9173893, 23658377, 24037537, 42489677, 56253203, 78222863, 96325093, 99846337, 110453773, 110468653, 117748427, 122173187, 130937467, 138072163, 146981537, 174978913, 184050553, 186927817
Offset: 1
Smallest such prime is 13 and the relevant four primes are
2, 173, 815730977 and a 571-digit prime.
-
{ta=Table[0, {100}], u=1}; {exponents, {a, b, c, d}={0, 2, 8, 512}} Do[s0=Prime[j]^a+2^a;s1=Prime[j]^b+2^b;s2=Prime[j]^c+2^c;s3=Prime[j]^d+2^d; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}] ta
A094478
Primes of form 2^j + 59^j.
Original entry on oeis.org
2, 61, 12117377, 464798130469793589516643498190087912509935907401081390977
Offset: 1
j=0: p=1+1=2;
j=1: p=2+59=61;
j=4: p=16+12117361=12117377;
j=32: p=2^32+59^32=464798130469793589516643498190087912509935907401081390977;
the j exponents are powers of 2.
A094483
Primes of form 2^j + 179^j.
Original entry on oeis.org
2, 181, 1026625697, 1110832290554380967776058484990830657
Offset: 1
-
Select[Table[2^j+179^j, {j,0,30}], PrimeQ] (* Harvey P. Dale, Apr 24 2013 *)
A094484
Primes of form 2^j + 461^j.
Original entry on oeis.org
2, 463, 45165175457, 4161163747708008324368372925882377717624897
Offset: 1
The relevant exponents are powers of 2: 0, 1, 4, 16; a(4) = 65536+461^16 = 4161163747708008324368372925882377717624897.
A094493
Primes p such that 2^j+p^j are primes for j=0,1,2,16.
Original entry on oeis.org
43577, 84317, 93887, 108377, 124247, 346667, 379997, 431867, 461297, 579197, 681257, 819317, 863867, 889037, 1143047, 1146797, 1271027, 1306817, 1518707, 1775867, 1926647, 1948517, 2119937, 2177447, 2348807, 2491607, 2604557
Offset: 1
For j=0: 1+1=2 is prime; other conditions are:
because of p^1+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=65536+p^16.
-
{ta=Table[0, {100}], u=1}; Do[s0=2;s1=2+Prime[j]^1;s2=4+Prime[j]^2;s16=65536+Prime[j]^16 If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s16], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
Select[Prime[Range[2*10^5]],AllTrue[Table[2^k+#^k,{k,{0,1,2,16}}],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 05 2021 *)
A161558
Primes of form 2^k+3^k-4.
Original entry on oeis.org
31, 271, 2311, 94151567431, 847322163871, 450284043329950831, 239299329793567483011391, 13915193059764305948125655305497609574930528737031, 123329495011708990974900261530856061081804307325717309329809036625289391
Offset: 1
-
lst={};Do[If[PrimeQ[p=2^n+3^n-4],AppendTo[lst,p]],{n,6!}];lst
Select[Table[2^k+3^k-4,{k,200}],PrimeQ] (* Harvey P. Dale, Apr 05 2019 *)
A173640
Primes of form n+2^n+3^n.
Original entry on oeis.org
2, 101, 60083, 11610630703530923996233764322611619865107483053157900065365853867349888133476404509
Offset: 1
-
Select[Table[n+2^n+3^n,{n,0,6!}],PrimeQ[#]&]
Comments