A132305
Sum of fifth powers of trinomial coefficients: a(n) = Sum_{k=0..2n} trinomial(n,k)^5 where trinomial(n,k) = [x^k] (1 + x + x^2)^n.
Original entry on oeis.org
1, 3, 309, 32847, 4775301, 764206503, 131689759209, 23857704965727, 4487745064421061, 869024373004460823, 172218243516497425809, 34778752398142969125627, 7134304921516864247956281, 1482965360342923597534988883, 311760492785929879483633778049
Offset: 0
A273019
a(n) = hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4).
Original entry on oeis.org
1, 5, 39, 321, 2675, 22483, 190345, 1621413, 13882947, 119385663, 1030434069, 8921880135, 77459553549, 674100041501, 5878674505303, 51361306358401, 449476337521875, 3939287035681807, 34570459724919253, 303749080936528883, 2671775251987354377, 23524418982229636185
Offset: 0
-
a := n -> hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4): seq(simplify(a(n)), n=0..22);
-
Table[HypergeometricPFQ[{-2*n-1, 1/2}, {2}, 4] + (2*n+1)*HypergeometricPFQ[ {-n+1/2, -n}, {2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)
A273020
a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)).
Original entry on oeis.org
1, 1, 3, 5, 19, 39, 141, 321, 1107, 2675, 8953, 22483, 73789, 190345, 616227, 1621413, 5196627, 13882947, 44152809, 119385663, 377379369, 1030434069, 3241135527, 8921880135, 27948336381, 77459553549, 241813226151, 674100041501, 2098240353907, 5878674505303, 18252025766941
Offset: 0
-
seq(simplify(hypergeom([-n,1/2],[2],4) + n*hypergeom([-n/2+1,-n/2+1/2],[2],4)), n=0..30);
-
Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1,-n,-1/2], {n,0,30} ]
-
def A():
a, b, c, d, n = 0, 1, 1, -1, 1
yield 1
while True:
yield d + b*(1-(-1)^n)
n += 1
a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
A273020 = A()
print([next(A273020) for _ in range(31)])
A280580
Triangle read by rows: T(n,k) = binomial(2*n,2*k)*binomial(2*n-2*k,n-k)/(n+1-k) for 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 6, 1, 5, 30, 15, 1, 14, 140, 140, 28, 1, 42, 630, 1050, 420, 45, 1, 132, 2772, 6930, 4620, 990, 66, 1, 429, 12012, 42042, 42042, 15015, 2002, 91, 1, 1430, 51480, 240240, 336336, 180180, 40040, 3640, 120, 1, 4862, 218790, 1312740, 2450448, 1837836, 612612, 92820, 6120, 153, 1
Offset: 0
Triangle begins:
n\k: 0 1 2 3 4 5 6 7 8 . . .
0: 1
1: 1 1
2: 2 6 1
3: 5 30 15 1
4: 14 140 140 28 1
5: 42 630 1050 420 45 1
6: 132 2772 6930 4620 990 66 1
7: 429 12012 42042 42042 15015 2002 91 1
8: 1430 51480 240240 336336 180180 40040 3640 120 1
etc.
T(3,2) = binomial(6,4) * binomial(2,1) / (3+1-2) = 15 * 2 / 2 = 15. - _Indranil Ghosh_, Feb 15 2017
A102319
A mean binomial transform of the central binomial numbers.
Original entry on oeis.org
1, 2, 7, 26, 107, 462, 2065, 9438, 43811, 205622, 972917, 4631838, 22157525, 106406978, 512629551, 2476289106, 11989326771, 58163714118, 282662269717, 1375801775214, 6705710840657, 32724623955882, 159880046446611
Offset: 0
-
A102319 := proc(n)
add(binomial(n, k)*binomial(2*k, k)*(1+(-1)^(n-k))/2,k=0..n) ;
end proc: # R. J. Mathar, Feb 20 2015
-
CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]+1/Sqrt[1-2*x-3*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 29 2013 *)
-
x='x+O('x^50); Vec((1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2) \\ G. C. Greubel, Mar 16 2017
A122935
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 6, 6, 1;
0, 1, 10, 19, 10, 1;
0, 1, 15, 45, 45, 15, 1;
0, 1, 21, 90, 141, 90, 21, 1;
0, 1, 28, 161, 357, 357, 161, 28, 1;
0, 1, 36, 266, 784, 1107, 784, 255, 36, 1;
0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1;
0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
A291080
Irregular triangle read by rows: T(n,m) = number of lattice paths of type {A^H}_R terminating at point (n, m).
Original entry on oeis.org
1, 3, 2, 1, 19, 16, 10, 4, 1, 141, 126, 90, 50, 21, 6, 1, 1107, 1016, 784, 504, 266, 112, 36, 8, 1, 8953, 8350, 6765, 4740, 2850, 1452, 615, 210, 55, 10, 1, 73789, 69576, 58278, 43252, 28314, 16236, 8074, 3432, 1221, 352, 78, 12, 1, 616227, 585690, 502593, 388752, 270270, 168168, 93093, 45474, 19383, 7098, 2184, 546, 105, 14, 1
Offset: 0
Triangle begins:
1;
3,2,1;
19,16,10,4,1;
141,126,90,50,21,6,1;
1107,1016,784,504,266,112,36,8,1;
8953,8350,6765,4740,2850,1452,615,210,55,10,1;
73789,69576,58278,43252,28314,16236,8074,3432,1221,352,78,12,1;
616227,585690,502593,388752,270270,168168,93093,45474,19383,7098,2184,546,105,14,1;
...
Comments