cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A132305 Sum of fifth powers of trinomial coefficients: a(n) = Sum_{k=0..2n} trinomial(n,k)^5 where trinomial(n,k) = [x^k] (1 + x + x^2)^n.

Original entry on oeis.org

1, 3, 309, 32847, 4775301, 764206503, 131689759209, 23857704965727, 4487745064421061, 869024373004460823, 172218243516497425809, 34778752398142969125627, 7134304921516864247956281, 1482965360342923597534988883, 311760492785929879483633778049
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2007

Keywords

Comments

Conjecture: the supercongruence a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) holds for all primes p >= 5 and positive integers n and k. - Peter Bala, Aug 29 2025

Crossrefs

Programs

  • PARI
    a(n)=sum(k=0,2*n,polcoeff((1+x+x^2)^n,k)^5)

A273019 a(n) = hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4).

Original entry on oeis.org

1, 5, 39, 321, 2675, 22483, 190345, 1621413, 13882947, 119385663, 1030434069, 8921880135, 77459553549, 674100041501, 5878674505303, 51361306358401, 449476337521875, 3939287035681807, 34570459724919253, 303749080936528883, 2671775251987354377, 23524418982229636185
Offset: 0

Views

Author

Peter Luschny, May 13 2016

Keywords

Crossrefs

Bisection of A273020.
Cf. A082758.

Programs

  • Maple
    a := n -> hypergeom([-2*n-1, 1/2], [2], 4) + (2*n+1)*hypergeom([-n+1/2, -n], [2], 4): seq(simplify(a(n)), n=0..22);
  • Mathematica
    Table[HypergeometricPFQ[{-2*n-1, 1/2}, {2}, 4] + (2*n+1)*HypergeometricPFQ[ {-n+1/2, -n}, {2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)

Formula

Conjecture: +(241*n+56) *(2*n+1) *(n+1)*a(n) +(482*n^3-25561*n^2+13831*n-56) *a(n-1) +(-48682*n^3+225897*n^2-300131*n+125310) *a(n-2) +9*(n-2) *(2651*n-3183) *(2*n-3) *a(n-3)=0. - R. J. Mathar, May 16 2016
Recurrence (of order 2): (n+1)*(2*n + 1)*(12*n^2 - 19*n + 9)*a(n) = (240*n^4 - 140*n^3 - 42*n^2 - 7*n + 9)*a(n-1) - 9*(n-1)*(2*n - 1)*(12*n^2 + 5*n + 2)*a(n-2). - Vaclav Kotesovec, Jul 05 2018
a(n) ~ 3^(2*n + 3/2) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 05 2018

A273020 a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)).

Original entry on oeis.org

1, 1, 3, 5, 19, 39, 141, 321, 1107, 2675, 8953, 22483, 73789, 190345, 616227, 1621413, 5196627, 13882947, 44152809, 119385663, 377379369, 1030434069, 3241135527, 8921880135, 27948336381, 77459553549, 241813226151, 674100041501, 2098240353907, 5878674505303, 18252025766941
Offset: 0

Views

Author

Peter Luschny, May 13 2016

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify(hypergeom([-n,1/2],[2],4) + n*hypergeom([-n/2+1,-n/2+1/2],[2],4)), n=0..30);
  • Mathematica
    Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1,-n,-1/2], {n,0,30} ]
  • Sage
    def A():
        a, b, c, d, n = 0, 1, 1, -1, 1
        yield 1
        while True:
            yield d + b*(1-(-1)^n)
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
            c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
    A273020 = A()
    print([next(A273020) for _ in range(31)])

Formula

a(n) = JacobiP(n, 1, -n-3/2, -7)/(n+1) + GegenbauerC(n-1, -n, -1/2), with a(0) = 1.
a(n) = hypergeom([-n,1/2], [2], 4) + n*hypergeom([-n/2+1,-n/2+1/2], [2], 4).
a(n) = (-1)^n*A005043(n) + A005717(n).
a(2*n) = A082758(n).
a(2*n+1) = A273019(n).

A280580 Triangle read by rows: T(n,k) = binomial(2*n,2*k)*binomial(2*n-2*k,n-k)/(n+1-k) for 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 6, 1, 5, 30, 15, 1, 14, 140, 140, 28, 1, 42, 630, 1050, 420, 45, 1, 132, 2772, 6930, 4620, 990, 66, 1, 429, 12012, 42042, 42042, 15015, 2002, 91, 1, 1430, 51480, 240240, 336336, 180180, 40040, 3640, 120, 1, 4862, 218790, 1312740, 2450448, 1837836, 612612, 92820, 6120, 153, 1
Offset: 0

Views

Author

Werner Schulte, Jan 05 2017

Keywords

Examples

			Triangle begins:
n\k:     0      1       2       3       4      5     6    7  8  . . .
  0:     1
  1:     1      1
  2:     2      6       1
  3:     5     30      15       1
  4:    14    140     140      28       1
  5:    42    630    1050     420      45      1
  6:   132   2772    6930    4620     990     66     1
  7:   429  12012   42042   42042   15015   2002    91    1
  8:  1430  51480  240240  336336  180180  40040  3640  120  1
  etc.
T(3,2) = binomial(6,4) * binomial(2,1) / (3+1-2) = 15 * 2 / 2 = 15. - _Indranil Ghosh_, Feb 15 2017
		

Crossrefs

Row sums are A026945.
Triangle related to A000108, A001006, A001263, and A039599.

Formula

T(n,k) = A001263(n+1,k+1)*A000108(n)/A000108(k) for 0 <= k <= n.
T(n,k) = binomial(2*n,2*k)*A000108(n-k) for 0 <= k <= n.
T(n,k) = A039599(n,k)*binomial(n+1+k,2*k+1)/(n+1-k) for 0 <= k <= n.
Recurrences: T(n,0) = A000108(n) and (1) T(n,k) = T(n,k-1)*(n+1-k)*(n+2-k)/ (2*k*(2*k-1)) for 0 < k <= n, (2) T(n,k) = T(n-1,k-1)*n*(2*n-1)/(k*(2*k-1)).
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^(2*k) satisfy the recurrence equation p"(n,x) = 2*n*(2*n-1)*p(n-1,x) with initial value p(0,x) = 1 ( n > 0, p" is the second derivative of p ), and Sum_{n>=0} p(n,x)*t^(2*n)/((2*n)!) = cosh(x*t)*(Sum_{n>=0} A000108(n)*t^(2*n)/((2*n)!)).
Conjectures: (1) Sum_{k=0..n} (-1)^k*T(n,k)*A238390(k) = A000007(n);
(2) Antidiagonal sums equal A001003(n);
(3) Matrix inverse equals T(n,k)*A103365(n+1-k).
Sum_{k=0..n} (n+1-k)*T(n,k) = A002426(2*n) = A082758(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A000108(n)*A000108(n+1) = A005568(n).
Matrix product: Sum_{i=0..n} T(n,i)*T(i,k) = T(n,k)*A000108(n+1-k) for 0<=k<=n.
T(n,k) = A097610(2*n,2*k) for 0 <= k <= n.
Sum_{k=0..n} (k+1)*T(n,k)*A000108(k) = binomial(2*n+1,n)*A000108(n).

A102319 A mean binomial transform of the central binomial numbers.

Original entry on oeis.org

1, 2, 7, 26, 107, 462, 2065, 9438, 43811, 205622, 972917, 4631838, 22157525, 106406978, 512629551, 2476289106, 11989326771, 58163714118, 282662269717, 1375801775214, 6705710840657, 32724623955882, 159880046446611
Offset: 0

Views

Author

Paul Barry, Jan 04 2005

Keywords

Comments

Second binomial transform of A082758 (with interpolated zeros).

Programs

  • Maple
    A102319 := proc(n)
        add(binomial(n, k)*binomial(2*k, k)*(1+(-1)^(n-k))/2,k=0..n) ;
    end proc: # R. J. Mathar, Feb 20 2015
  • Mathematica
    CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]+1/Sqrt[1-2*x-3*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 29 2013 *)
  • PARI
    x='x+O('x^50); Vec((1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2) \\ G. C. Greubel, Mar 16 2017

Formula

G.f.: (1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*binomial(2*(n-2*k), n-2*k).
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)*(1+(-1)^(n-k))/2.
E.g.f.: cosh(x)*exp(2*x)*I_0(2x). - Paul Barry, May 01 2005
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 29 2013
Conjecture: n*(n-1)*a(n) -4*(n-1)*(3*n-4)*a(n-1) +(53*n^2-221*n+232)*a(n-2) +8*(-13*n^2+85*n-134)*a(n-3) +(51*n^2-563*n+1308)*a(n-4) +4*(29*n-93)*(n-4)*a(n-5) -105*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Feb 20 2015
Conjecture:+n*(n-1)*(12*n^2-48*n+41)*a(n) -8*(n-1)*(12*n^3-54*n^2+65*n-17)*a(n-1) +2*(84*n^4-504*n^3+1025*n^2-775*n+131)*a(n-2) +8*(n-2)*(12*n^3-54*n^2+65*n-20)*a(n-3) -15*(n-2)*(n-3)*(12*n^2-24*n+5)*a(n-4)=0. - R. J. Mathar, Feb 20 2015

A122935 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2006

Keywords

Comments

Subtriangle (1 <= k <= n) is in A056241.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,   1;
  0, 1,  6,   6,    1;
  0, 1, 10,  19,   10,    1;
  0, 1, 15,  45,   45,   15,    1;
  0, 1, 21,  90,  141,   90,   21,    1;
  0, 1, 28, 161,  357,  357,  161,   28,    1;
  0, 1, 36, 266,  784, 1107,  784,  255,   36,   1;
  0, 1, 45, 414, 1554, 2907, 2907, 1554,  414,  45,  1;
  0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
		

Crossrefs

Formula

T(2*k-1,k) = A082758(k-1)for k >= 1.
Sum_{k=0..n} T(n,k) = A124302(n); see also A007051.
Sum_{k=0..n} (-1)^(n-k)*T(n,k) = A117569(n).
G.f.: (1-x*(y+2)+x^2)/(1-2x*(1+y)+(1+y+y^2)*x^2). - Philippe Deléham, Oct 30 2011

A291080 Irregular triangle read by rows: T(n,m) = number of lattice paths of type {A^H}_R terminating at point (n, m).

Original entry on oeis.org

1, 3, 2, 1, 19, 16, 10, 4, 1, 141, 126, 90, 50, 21, 6, 1, 1107, 1016, 784, 504, 266, 112, 36, 8, 1, 8953, 8350, 6765, 4740, 2850, 1452, 615, 210, 55, 10, 1, 73789, 69576, 58278, 43252, 28314, 16236, 8074, 3432, 1221, 352, 78, 12, 1, 616227, 585690, 502593, 388752, 270270, 168168, 93093, 45474, 19383, 7098, 2184, 546, 105, 14, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 19 2017

Keywords

Examples

			Triangle begins:
  1;
  3,2,1;
  19,16,10,4,1;
  141,126,90,50,21,6,1;
  1107,1016,784,504,266,112,36,8,1;
  8953,8350,6765,4740,2850,1452,615,210,55,10,1;
  73789,69576,58278,43252,28314,16236,8074,3432,1221,352,78,12,1;
  616227,585690,502593,388752,270270,168168,93093,45474,19383,7098,2184,546,105,14,1;
  ...
		

Crossrefs

First column is A082758.
Previous Showing 11-17 of 17 results.