cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A168019 Square array A(n,k) read by antidiagonals, in which row n lists the number of partitions of n into parts divisible by k+1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 0, 0, 0, 0, 0, 1, 15, 3, 0, 1, 0, 0, 0, 1, 22, 0, 2, 0, 0, 0, 0, 0, 1, 30, 5, 0, 0, 1, 0, 0, 0, 0, 1, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2009

Keywords

Comments

Note that column k lists each partition number A000041 followed by k zeros. See also A168020 and A168021.
Let A(n,k) denote the number of partitions of n into parts divisible by k+1. Let p(n) denote the number of partitions of n. If k+1 is a divisor of n then A(n,k) = p(n/(k+1)) otherwise A(n,k) = 0. [Conjectured by Omar E. Pol, Nov 25 2009] - this is trivial, just divide each part size by k - Franklin T. Adams-Watters, May 14 2010.

Examples

			The array, A(n, k), begins:
==================================================
... Column k: 0.. 1. 2. 3. 4. 5. 6. 7. 8. 9 10 11
. Row ...........................................
...n ............................................
==================================================
.. 0 ........ 1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
.. 1 ........ 1,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 2 ........ 2,  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 3 ........ 3,  0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 4 ........ 5,  2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
.. 5 ........ 7,  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
.. 6 ....... 11,  3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0,
.. 7 ....... 15,  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
.. 8 ....... 22,  5, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0,
.. 9 ....... 30,  0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0,
. 10 ....... 42,  7, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0,
. 11 ....... 56,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
. 12 ....... 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
Antidiagonal triangle, T(n, k), begins as:
   1;
   1, 1;
   2, 0, 1;
   3, 1, 0, 1;
   5, 0, 0, 0, 1;
   7, 2, 1, 0, 0, 1;
  11, 0, 0, 0, 0, 0, 1;
  15, 3, 0, 1, 0, 0, 0, 1;
  22, 0, 2, 0, 0, 0, 0, 0, 1;
  30, 5, 0, 0, 1, 0, 0, 0, 0, 1;
  42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[(n-k)/(k+1)], PartitionsP[(n-k)/(k+1)], 0];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
  • SageMath
    def A168019(n,k): return number_of_partitions((n-k)/(k+1)) if ((n-k)%(k+1))==0 else 0
    flatten([[A168019(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 13 2023

Formula

From G. C. Greubel, Jan 13 2023: (Start)
A(n, k) = A000041(n/(k+1)) if (k+1)|n, otherwise 0 (array).
T(n, k) = A000041((n-k)/(k+1)) if (k+1)|(n-k), otherwise 0 (antidiagonals).
A(n, 0) = T(n, 0) = A000041(n).
T(2*n, n) = A(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A083710(n+1). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Franklin T. Adams-Watters, May 14 2010

A339660 Number of strict integer partitions of n with no 1's and a part divisible by all the other parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 1, 3, 3, 3, 3, 5, 2, 5, 5, 4, 5, 7, 3, 5, 6, 5, 5, 9, 4, 7, 6, 6, 9, 11, 6, 9, 10, 9, 10, 12, 6, 11, 12, 10, 12, 16, 9, 15, 16, 12, 14, 18, 14, 16, 18, 14, 15, 22, 11, 16, 20, 13, 21, 23, 15, 21, 24, 21, 21, 31, 14, 24
Offset: 0

Views

Author

Gus Wiseman, Apr 19 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with no 1's that are empty or have greatest part divisible by all the other parts.

Examples

			The a(n) partitions for n = 14, 12, 18, 24, 30, 39, 36:
  (14)     (12)    (18)      (24)        (30)        (39)          (36)
  (12,2)   (8,4)   (12,6)    (16,8)      (24,6)      (36,3)        (27,9)
  (8,4,2)  (9,3)   (15,3)    (18,6)      (25,5)      (26,13)       (30,6)
           (10,2)  (16,2)    (20,4)      (27,3)      (27,9,3)      (32,4)
                   (12,4,2)  (21,3)      (28,2)      (28,7,4)      (33,3)
                             (22,2)      (20,10)     (30,6,3)      (34,2)
                             (12,6,4,2)  (18,9,3)    (24,12,3)     (24,12)
                                         (24,4,2)    (24,8,4,3)    (24,8,4)
                                         (16,8,4,2)  (20,10,5,4)   (18,9,6,3)
                                                     (24,6,4,3,2)  (24,6,4,2)
                                                                   (20,10,4,2)
		

Crossrefs

The dual version is A098965 (non-strict: A083711).
The non-strict version is A339619 (Heinz numbers: complement of A343337).
The version with 1's allowed is A343347 (non-strict: A130689).
The case without a part dividing all the other parts is A343380.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&UnsameQ@@#&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}]

A137587 Triangle read by rows: A051731 * A026794.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 6, 1, 0, 0, 1, 11, 3, 2, 0, 0, 1, 12, 2, 1, 0, 0, 0, 1, 20, 6, 1, 2, 0, 0, 0, 1, 25, 4, 3, 1, 0, 0, 0, 0, 1, 37, 9, 2, 1, 2, 0, 0, 0, 0, 1, 43, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 70, 16, 6, 3, 1, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 27 2008

Keywords

Comments

That is, regard A051731 and A026794 as lower triangular square matrices and multiply them, then take the lower triangle of the product,
Left column = A083710 starting (1, 2, 3, 5, 6, 11, 12, ...).
Row sums = A047968.

Examples

			First few rows of the triangle:
   1;
   2, 1;
   3, 0, 1;
   5, 2, 0, 1;
   6, 1, 0, 0, 1;
  11, 3, 2, 0, 0, 1;
  12, 2, 1, 0, 0, 0, 1;
  20, 6, 1, 2, 0, 0, 0, 1;
  25, 4, 3, 1, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Inverse mobius transform of the partition triangle, A026794.

Extensions

Typo in 9th row corrected by M. F. Hasler, Jun 08 2009

A343348 Irregular triangle read by rows where T(n,k) is the number of strict integer partitions of n with least gap k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 0, 5, 2, 1, 0, 5, 3, 1, 0, 1, 7, 3, 1, 1, 0, 8, 4, 2, 1, 0, 10, 5, 2, 1, 0, 12, 6, 3, 1, 0, 15, 7, 3, 1, 0, 1, 17, 9, 4, 1, 1, 0, 21, 10, 4, 2, 1, 0, 25, 12, 6, 2, 1, 0, 29, 15, 6, 3, 1, 0, 35, 17, 8, 3, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2021

Keywords

Comments

The least gap (or mex) of a partition is the least positive integer that is not a part.
Row lengths are chosen to be consistent with the non-strict case A264401.

Examples

			Triangle begins:
   1
   0   1
   1   0
   1   0   1
   1   1   0
   2   1   0
   2   1   0   1
   3   1   1   0
   3   2   1   0
   5   2   1   0
   5   3   1   0   1
   7   3   1   1   0
   8   4   2   1   0
  10   5   2   1   0
  12   6   3   1   0
  15   7   3   1   0   1
		

Crossrefs

Row sums are A000009.
Row lengths are A002024.
Column k = 1 is A025147.
Column k = 2 is A025148.
The non-strict version is A264401.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A257993 gives the least gap of the partition with Heinz number n.
A339564 counts factorizations with a selected factor.
A342050 ranks partitions with even least gap.
A342051 ranks partitions with odd least gap.

Programs

  • Mathematica
    mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}]

A130708 Number of compositions of n such that every part divides the largest part.

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 26, 45, 79, 137, 241, 423, 754, 1343, 2410, 4344, 7870, 14305, 26103, 47763, 87649, 161229, 297251, 549108, 1016243, 1883898, 3497761, 6503420, 12107958, 22570221, 42121298, 78692765, 147165225, 275476533, 516115940
Offset: 0

Views

Author

Vladeta Jovovic, Jul 01 2007

Keywords

Crossrefs

Programs

  • Maple
    A130708 := proc(n) local gf,den1,den2,i,d ; gf := 1 ; for i from 1 to n do den1 := 1 ; den2 := 1 ; for d in numtheory[divisors](i) do den1 := den1-x^d ; if d < i then den2 := den2-x^d ; fi ; od ; gf := taylor(gf+x^i/den1/den2,x=0,n+1) ; od: coeftayl(gf,x=0,n) ; end: seq(A130708(n),n=0..40) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    m = 35;
    1 + Sum[x^n/((1 - Sum[x^d, {d, Divisors[n]}]) (1 - Sum[Boole[d < n] x^d, {d, Divisors[n]}])), {n, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, May 22 2020 *)

Formula

G.f.: 1 + Sum_{n>0} x^n/((1-Sum_{d divides n} x^d)*(1-Sum_{d divides n,d

Extensions

More terms from R. J. Mathar, Oct 28 2007

A130711 Number of compositions of n such that the smallest part divides every part.

Original entry on oeis.org

1, 2, 4, 8, 14, 32, 57, 123, 239, 493, 970, 1997, 3953, 8017, 16024, 32281, 64550, 129742, 259561, 520606, 1041871, 2087177, 4176594, 8362063, 16730862, 33483361, 66987710, 134029333, 268117646, 536373213, 1072909785, 2146169660
Offset: 1

Author

Vladeta Jovovic, Jul 01 2007

Keywords

Examples

			a(5)=14 because among the 16 compositions of 5 only 2+3 and 3+2 do not qualify; the others, except for the composition 5, have at least one component equal to 1.
		

Crossrefs

Cf. A083710.

Programs

  • Maple
    G:=sum(x^n*(1-x^n)^2/((1-2*x^n)*(1-x^n-x^(2*n))), n=1..50); Gser:=series(G, x =0,40): seq(coeff(Gser,x,n),n=1..33); # Emeric Deutsch, Sep 08 2007

Formula

Inverse Moebius transform of A099036.
G.f.: Sum_{n>0} x^n*(1-x^n)^2/((1-2*x^n)*(1-x^n-x^(2*n))).

Extensions

More terms from Emeric Deutsch, Sep 08 2007
Previous Showing 31-36 of 36 results.