cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A383988 Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963).

Original entry on oeis.org

0, 1, -2, 12, -110, 1380, -22022, 426972, -9747950, 256176660, -7617417302, 252851339532, -9268406209790, 371843710214340, -16206868062692582, 762569209601624892, -38525315595630383630, 2079964082064837282420, -119513562475103977951862
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -postLie(-x) is the inverse for the substitution of the series comTrias(x), given by the suspension of the Koszul dual of comTrias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A002050, A006531, A084099, A097388, A101851, A114285, A225883, A383985, A383986, A383987, A383989. Composition of -A006963(-x) and exp(x)-1.

Programs

  • Mathematica
    nn = 18; f[x_] := Log[(1 + Sqrt[1 + 4*x])/2];
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A084100 Expansion of (1+x-x^2-x^3)/(1+x^2).

Original entry on oeis.org

1, 1, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Partial sums are A084099.
The unsigned sequence 1,1,2,2,2,2,.. has g.f. (1+x^2)/(1-x) and a(n)=sum{k=0..n, binomial(1,k/2)(1+(-1)^k)/2}. Its partial sums are A004275(n+1). The sequence 1,-1,2,-2,2,-2,... has g.f. (1+x^2)/(1+x) and a(n)=sum{k=0..n, (-1)^(n-k)binomial(1,k/2)(1+(-1)^k)/2}. - Paul Barry, Oct 15 2004

Examples

			G.f. = 1 + x - 2*x^2 - 2*x^3 + 2*x^4 + 2*x^5 - 2*x^6 - 2*x^7 + 2*x^8 + 2*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^2-x^3)/(1+x^2),{x,0,100}],x]  (* Harvey P. Dale, Apr 20 2011 *)
    a[ n_] := (-1)^Quotient[n, 2] If[ Quotient[n, 2] != 0, 2, 1]; (* Michael Somos, Jan 05 2017 *)
  • PARI
    {a(n) = (-1)^(n\2) * if( n\2, 2, 1)}; /* Michael Somos, Jan 05 2017 */

Formula

Euler transform of length 4 sequence [1, -3, 0, 1]. - Michael Somos, Jan 05 2017
G.f.: (1 + x) * (1 - x^2) / (1 + x^2). - Michael Somos, Jan 05 2017
a(n) = a(1-n) for all n in Z. - Michael Somos, Jan 05 2017
a(2*n) = a(2*n + 1) = A280560(n) for all n in Z. - Michael Somos, Jan 05 2017

A100088 Expansion of (1-x^2)/((1-2*x)*(1+x^2)).

Original entry on oeis.org

1, 2, 2, 4, 10, 20, 38, 76, 154, 308, 614, 1228, 2458, 4916, 9830, 19660, 39322, 78644, 157286, 314572, 629146, 1258292, 2516582, 5033164, 10066330, 20132660, 40265318, 80530636, 161061274, 322122548, 644245094, 1288490188, 2576980378
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

A Chebyshev transform of A100087, under the mapping A(x) -> ((1-x^2)/(1+x^2)) * A(x/(1+x^2)).
A176742(n+2) = A084099(n+2) = period 4:repeat 0, -2, 0, 2.

Crossrefs

Programs

  • Magma
    [n le 3 select Floor((n+2)/2) else 2*Self(n-1) - Self(n-2) +2*Self(n-3): n in [1..41]]; // G. C. Greubel, Jul 08 2022
    
  • Mathematica
    CoefficientList[Series[(1-x^2)/((1-2x)(1+x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,-1,2},{1,2,2},40] (* Harvey P. Dale, May 12 2011 *)
  • Python
    def A100088(n): return ((4<Chai Wah Wu, Apr 22 2025
  • SageMath
    def b(n): return (2/5)*(3*2^(2*n-1) + (-1)^n) # b=A122117
    def A100088(n): return b(n/2) if (n%2==0) else 2*b((n-1)/2)
    [A100088(n) for n in (0..60)]  # G. C. Greubel, Jul 08 2022
    

Formula

a(n) = (3*2^n + 2*cos(Pi*n/2) + 4*sin(Pi*n/2))/5.
a(n) = n*Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A100087(n-2*k)/(n-k).
a(n) = 2*a(n-1) + period 4:repeat 0, -2, 0, 2, with a(0) = 1.
a(n) = A007910(n+1) - A007910(n-1).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3).
a(n) = (1/5)*(3*2^n + i^n*(1+(-1)^n) - 2*i^(n+1)*(1-(-1)^n)). - G. C. Greubel, Jul 08 2022
a(n) = A122117(n/2) if (n mod 2 = 0) otherwise 2*A122117((n-1)/2). - G. C. Greubel, Jul 21 2022
Previous Showing 11-13 of 13 results.