cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137470 Inverse binomial transform of 1, 2, 2, 4, 10, 20, ... = A100088.

Original entry on oeis.org

1, 1, -1, 3, -1, -1, 7, -9, 7, 7, -25, 39, -25, -25, 103, -153, 103, 103, -409, 615, -409, -409, 1639, -2457, 1639, 1639, -6553, 9831, -6553, -6553, 26215, -39321, 26215, 26215, -104857, 157287, -104857, -104857, 419431
Offset: 0

Views

Author

Paul Curtz, Apr 20 2008

Keywords

Formula

a(n)=[3+(1-2i)(i-1)^n+(1+2i)(-1-i)^n]/5 where i=sqrt(-1). - R. J. Mathar, Apr 25 2008
O.g.f.: -(1+2x)/((1+2x+2x^2)(-1+x)). - R. J. Mathar, Apr 25 2008
a(n+1)-a(n)=A090132(n+1). - R. J. Mathar, Apr 25 2008
G.f.: Q(0)*(1+2*x)/(2- 2*x), where Q(k) = 1 + 1/(1 - x*(4*k+2 +2*x)/(x*(4*k+4 +2*x) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 01 2014

Extensions

More terms from R. J. Mathar, Apr 25 2008

A122117 a(n) = 3*a(n-1) + 4*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 10, 38, 154, 614, 2458, 9830, 39322, 157286, 629146, 2516582, 10066330, 40265318, 161061274, 644245094, 2576980378, 10307921510, 41231686042, 164926744166, 659706976666, 2638827906662, 10555311626650, 42221246506598
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2006

Keywords

Comments

Inverse binomial transform of A005053. Binomial transform of [1, 1, 7, 13, 55, ...] = A015441(n+1).
Convolved with [1, 2, 2, 2, ...] = powers of 4: [1, 4, 16, 64, ...]. - Gary W. Adamson, Jun 02 2009
a(n) is the number of compositions of n when there are 2 types of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, May 18 2019
    
  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 06 2012
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x-4*x^2),{x,0,30}],x] (* Vincenzo Librandi, Jul 06 2012 *)
  • PARI
    Vec((1-x)/(1-3*x-4*x^2)+O(x^30)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • Python
    def A122117(n): return ((4<<(m:=n<<1))|2)//5-((1<Chai Wah Wu, Apr 22 2025
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,3,4, lambda n: 0); [next(it) for i in range(24)] # Zerinvary Lajos, Jul 03 2008
    
  • Sage
    ((1-x)/(1-3*x-4*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 18 2019
    

Formula

a(n) = 2*A108981(n-1) for n > 0, with a(0) = 1.
a(2*n) = 4*a(2*n-1) + 2, a(2*n+1) = 4*a(2*n) - 2.
a(n) = Sum_{k=0..n} 2^(n-k)*A055380(n,k).
G.f.: (1-x)/(1-3*x-4*x^2).
Lim_{n->infinity} a(n+1)/a(n) = 4.
a(n) = Sum_{k=0..n} A122016(n,k)*2^k. - Philippe Deléham, Nov 05 2008
a(n) = A100088(2*n). - Chai Wah Wu, Apr 22 2025

Extensions

Corrected by T. D. Noe, Nov 07 2006

A100087 Expansion of x/(sqrt(1-4*x^2) + x - 1).

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 148, 370, 920, 2300, 5736, 14340, 35808, 89520, 223668, 559170, 1397496, 3493740, 8732920, 21832300, 54575888, 136439720, 341082504, 852706260, 2131706864, 5329267160, 13322959888, 33307399720, 83267756400, 208169391000, 520420803060, 1301052007650
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Inverse Chebyshev transform of (1-x^2)/((1-2*x)*(1+x^2)), the g.f. of A100088, under the mapping g(x) -> (1/sqrt(1-4*x^2))*g(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108. Equivalently, its image under the Chebyshev map A(x) -> ((1-x^2)/(1+x^2))*A(x/(1+x^2)) is A100088.
Transform of 1/(1-2*x) under the mapping g(x) -> g(x*c(x^2)). - Paul Barry, Jan 17 2005

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( x/(Sqrt(1-4*x^2) +x-1) )); // G. C. Greubel, Jul 08 2022
    
  • Mathematica
    CoefficientList[Series[x/(Sqrt[1-4*x^2]+x-1), {x, 0, 50}], x] (* Vaclav Kotesovec, Dec 06 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)+x-1)) \\ Joerg Arndt, May 12 2013
    
  • SageMath
    @CachedFunction
    def A100067(n): return sum( binomial(n,k)*2^(n-2*k) for k in (0..(n//2)) )
    def A100087(n): return (3/5)*A100067(n) + (1/5)*((1+(-1)^n) -2*I*(1-(-1)^n))*I^n*(-1)^floor(n/2)*binomial(n-1, floor(n/2))
    [A100087(n) for n in (0..60)] # G. C. Greubel, Jul 08 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n, k)*(3*2^(n-2*k) + 2*cos(Pi*(n-2*k)/2) + 4*sin(Pi*(n-2*k)/2))/5.
a(n) = Sum_{k=0..floor(n/2)} C(n, k)*A100088(n-2*k).
a(n) = Sum_{k=0..n} k*C(n-1,(n-k)/2)*(1 + (-1)^(n-k))*2^k/(n+k). - Paul Barry, Jan 17 2005
D-finite with recurrence: 4*n*a(n) + 2*(2*n-7)*a(n-1) - (51*n-83)*a(n-2) - 8*(2*n-13)*a(n-3) + 140*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 22 2012
a(n) ~ 3*5^(n-1)/2^n. - Vaclav Kotesovec, Dec 06 2012
Showing 1-3 of 3 results.