cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A290499 Hypotenuses for which there exist exactly 8 distinct integer triangles.

Original entry on oeis.org

390625, 781250, 1171875, 1562500, 2343750, 2734375, 3125000, 3515625, 4296875, 4687500, 5468750, 6250000, 7031250, 7421875, 8203125, 8593750, 8984375, 9375000, 10546875, 10937500, 12109375, 12500000, 12890625, 14062500, 14843750, 16406250, 16796875, 17187500
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 8 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eight.

Examples

			a(1) = 390625 = 5^8, a(5) = 2343750 = 2*3*5^8, a(101) = 75000000 = 2^6*3*5^8.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^8 for k, p > 0 ordered by increasing values.

A290500 Hypotenuses for which there exist exactly 9 distinct integer triangles.

Original entry on oeis.org

1953125, 3906250, 5859375, 7812500, 11718750, 13671875, 15625000, 17578125, 21484375, 23437500, 27343750, 31250000, 35156250, 37109375, 41015625, 42968750, 44921875, 46875000, 52734375, 54687500, 60546875, 62500000, 64453125, 70312500, 74218750, 82031250
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 9 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity nine.

Examples

			a(1) = 1953125 = 5^9, a(5) = 11718750 = 2*3*5^9, a(101) = 375000000 = 2^6*3*5^9.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^9 for k, p > 0 ordered by increasing values.

A290501 Hypotenuses for which there exist exactly 11 distinct integer triangles.

Original entry on oeis.org

48828125, 97656250, 146484375, 195312500, 292968750, 341796875, 390625000, 439453125, 537109375, 585937500, 683593750, 781250000, 878906250, 927734375, 1025390625, 1074218750, 1123046875, 1171875000, 1318359375, 1367187500, 1513671875, 1562500000, 1611328125
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 11 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eleven.

Examples

			a(1) = 48828125 = 5^11, a(5) = 292968750 = 2*3*5^11, a(101) = 9375000000 = 2^6*3*5^11.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^11 for k, p > 0 ordered by increasing values.

A290502 Hypotenuses for which there exist exactly 14 distinct integer triangles.

Original entry on oeis.org

6103515625, 12207031250, 18310546875, 24414062500, 36621093750, 42724609375, 48828125000, 54931640625, 67138671875, 73242187500, 85449218750, 97656250000, 109863281250, 115966796875, 128173828125, 134277343750, 140380859375, 146484375000, 164794921875
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 14 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fourteen.

Examples

			a(1) = 6103515625 = 5^14, a(5) = 36621093750 = 2*3*5^14, a(101) = 1171875000000 = 2^6*3*5^14.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^14 for k, p > 0 ordered by increasing values.

A290503 Hypotenuses for which there exist exactly 15 distinct integer triangles.

Original entry on oeis.org

30517578125, 61035156250, 91552734375, 122070312500, 183105468750, 213623046875, 244140625000, 274658203125, 335693359375, 366210937500, 427246093750, 488281250000, 549316406250, 579833984375, 640869140625, 671386718750, 701904296875, 732421875000
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 15 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fifteen.

Examples

			a(1) = 30517578125 = 5^15, a(5) = 183105468750 = 2*3*5^15, a(101) = 5859375000000 = 2^6*3*5^15.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^15 for k, p > 0 ordered by increasing values.

A290504 Hypotenuses for which there exist exactly 18 distinct integer triangles.

Original entry on oeis.org

3814697265625, 7629394531250, 11444091796875, 15258789062500, 22888183593750, 26702880859375, 30517578125000, 34332275390625, 41961669921875, 45776367187500, 53405761718750, 61035156250000, 68664550781250, 72479248046875, 80108642578125, 83923339843750
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 18 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eighteen.

Examples

			a(1) = 3814697265625 = 5^18, a(5) = 22888183593750 = 2*3*5^18, a(101) = 732421875000000 = 2^6*3*5^18.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^18 for k, p > 0 ordered by increasing values.

A290505 Hypotenuses for which there exist exactly 19 distinct integer triangles.

Original entry on oeis.org

203125, 265625, 406250, 453125, 531250, 578125, 609375, 640625, 796875, 812500, 828125, 906250, 953125, 1062500, 1140625, 1156250, 1218750, 1281250, 1359375, 1390625, 1421875, 1515625, 1578125, 1593750, 1625000, 1656250, 1703125, 1734375, 1765625, 1812500
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 19 different ways into the sum of two nonzero squares: these are those with exactly two distinct prime divisors of the form 4k+1 with one, and six respective multiplicities, or with only one prime divisor of this form with multiplicity nineteen.

Examples

			a(1) = 203125 = 5^6*13, a(5) = 531250 = 2*5^6*17, a(281) = 12796875 = 3^2*5^6*7*13.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the products A004144(k)*A002144(p1)*A002144(p2)^6, or A004144(k)*A002144(p1)^19 for k, p1, p2 > 0 ordered by increasing values.

A025303 Numbers that are the sum of 2 distinct nonzero squares in exactly 2 ways.

Original entry on oeis.org

65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 625, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905, 949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 3, and with no prime divisor of the form 4k+3 to an odd multiplicity. - Jean-Christophe Hervé, Dec 01 2013

Examples

			65 = 5*13 = 64+1 = 49 + 16; 85 = 5*17 = 81+4 = 49+16; 125 = 5^3 = 121+4 = 100+25; 130 = 2*5*13 = 121+9 = 81+49. - _Jean-Christophe Hervé_, Dec 01 2013
		

Crossrefs

Cf. A001481, A004431, A004018, A230779 (one way).
Cf. analogs for square decompositions: A084645, A084646, A084647, A084648, A084649.

Programs

  • Mathematica
    nn = 949; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 2]] (* T. D. Noe, Apr 07 2011 *)

Formula

A004018(a(n)) = 16. - Jean-Christophe Hervé, Dec 01 2013

A164282 Hypotenuses of more than two Pythagorean triangles.

Original entry on oeis.org

65, 85, 125, 130, 145, 170, 185, 195, 205, 221, 250, 255, 260, 265, 290, 305, 325, 340, 365, 370, 375, 377, 390, 410, 425, 435, 442, 445, 455, 481, 485, 493, 500, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 650, 663, 680, 685, 689
Offset: 1

Views

Author

Keywords

Comments

Also, hypotenuses c of Pythagorean triangles with legs a and b such that a and b are also the hypotenuses of Pythagorean triangles, where the Pythagorean triples (x1,y1,a) and (x2,y2,b) are similar triangles, but the Pythagorean triples (a,b,c) and (x1,y1,a) are not similar. For example, 65^2 = 25^2 + 60^2 with 25^2 = 15^2 + 20^2 and 60^2 = 36^2 + 48^2 with the two smaller triangles being similar. - Naohiro Nomoto

Examples

			65 is included because there are 4 distinct Pythagorean triangles with hypotenuse 65. In particular, 65^2 = 16^2 + 63^2 = 25^2 + 60^2 = 33^2 + 56^2 = 39^2 + 52^2.
		

Crossrefs

Programs

  • Mathematica
    Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}];k/2]; lst={};Do[If[f[n]>2,AppendTo[lst,n]],{n,5*5!}];lst
  • PARI
    ok(n)={my(t=0); for(k=1, sqrtint(n^2\2), t += issquare(n^2-k^2)); t>2}
    select(ok, [1..1000]) \\ Andrew Howroyd, Aug 17 2018

Extensions

Terms a(45) and beyond from Andrew Howroyd, Aug 17 2018

A232438 Squares or double-squares that are the sum of two distinct nonzero squares in exactly one way.

Original entry on oeis.org

25, 50, 100, 169, 200, 225, 289, 338, 400, 450, 578, 676, 800, 841, 900, 1156, 1225, 1352, 1369, 1521, 1600, 1681, 1682, 1800, 2025, 2312, 2450, 2601, 2704, 2738, 2809, 3025, 3042, 3200, 3362, 3364, 3600, 3721, 4050, 4624, 4900, 5202, 5329, 5408, 5476
Offset: 1

Views

Author

Jean-Christophe Hervé, Dec 01 2013

Keywords

Comments

Subsequence of A004431 and A001481.
Numbers with exactly one prime factor of form 4k+1 with multiplicity 2, and without prime factor of form 4k+3 to an odd multiplicity.

Examples

			25 = 5^2 = 16+9; 50 = 2*5^2 = 49+1.
		

Crossrefs

Analogs for square decompositions: A084645, A084646, A084647, A084648, A084649.

Programs

  • Mathematica
    Select[Range[10^4], (IntegerQ[Sqrt[#]] || IntegerQ[Sqrt[#/2]]) && Count[ PowersRepresentations[#, 2, 2], {x_, y_} /; Unequal[0, x, y]] == 1 &]
    (* or *) Select[Range[10^4], SquaresR[2, #] == 12 &] (* Jean-François Alcover, Dec 03 2013 *)

Formula

A004018(a(n)) = 12.
Terms are obtained by the products A125853(k)*A002144(p)^2 for k, p > 0, ordered by increasing values.
Previous Showing 21-30 of 30 results.