cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A387228 Expansion of sqrt((1-x) / (1-5*x)^5).

Original entry on oeis.org

1, 12, 103, 764, 5215, 33728, 210021, 1271504, 7532547, 43859460, 251809701, 1428911652, 8028877233, 44734340784, 247433518875, 1359902816880, 7432212863235, 40416897046740, 218812616979845, 1179889937796900, 6339243523221245, 33947223885549040, 181245459484155935
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-5*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-5*x)^5))
    

Formula

n*a(n) = (6*n+6)*a(n-1) - 5*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 8 * 5^(n - 1/2) * n^(3/2) / (3*sqrt(Pi)). - Vaclav Kotesovec, Aug 23 2025

A026392 T(n,[ n/2 ]), where T is the array in A026386.

Original entry on oeis.org

1, 2, 4, 8, 17, 34, 75, 150, 339, 678, 1558, 3116, 7247, 14494, 34016, 68032, 160795, 321590, 764388, 1528776, 3650571, 7301142, 17501619, 35003238, 84179877, 168359754, 406020930, 812041860, 1963073865, 3926147730
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Conjecture: (n+1)*a(n) +2*(n-1)*a(n-1) +2*(-3*n+1)*a(n-2) +4*(-3*n+7)*a(n-3) +5*(n-3)*a(n-4) +10*(n-5)*a(n-5)=0. - R. J. Mathar, Feb 10 2015

Extensions

Offset corrected. R. J. Mathar, Feb 10 2015

A360290 a(n) = Sum_{k=0..floor(n/2)} binomial(n-1-k,k) * binomial(2*n-4*k,n-2*k).

Original entry on oeis.org

1, 2, 6, 22, 82, 314, 1222, 4814, 19138, 76626, 308550, 1248230, 5069266, 20654602, 84392838, 345659166, 1418769154, 5834283298, 24031706246, 99134911542, 409495076050, 1693539077210, 7011618614342, 29058701620974, 120540377731266, 500443750830962
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1-k, k) * Binomial(2*n-4*k, n-2*k): k in [0..Floor(n div 2)]]: n in [0..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[Binomial[n-1-k,k]* Binomial[2*n-4*k, n-2*k],{k,0,Floor[n/2]}],{n,0,35}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-1-k, k)*binomial(2*n-4*k, n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^2)))
    

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^2)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-2)*a(n-2) - 2*(2*n-7)*a(n-3) - (n-4)*a(n-4).
a(n) ~ phi^(3*n) / (5^(1/4) * sqrt(Pi*n/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Feb 02 2023
a(n) = A383573(n) - A383573(n-2). - Seiichi Manyama, May 01 2025

A377200 Expansion of 1/(1 - 4*x/(1-x))^(7/2).

Original entry on oeis.org

1, 14, 140, 1190, 9170, 66122, 454328, 3009050, 19359620, 121664410, 749879508, 4546925922, 27188341530, 160624341990, 939009926520, 5438826037974, 31244200818306, 178173537480330, 1009366349014100, 5684102310204850, 31836106214747590, 177430881586034110
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x/(1-x))^(7/2))); // Vincenzo Librandi, May 11 2025
  • Mathematica
    Table[Sum[(-4)^k*Binomial[-7/2,k]*Binomial[n-1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-4)^k*binomial(-7/2, k)*binomial(n-1, n-k));
    

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} (7-5*k/n) * a(k).
a(n) = (2*(3*n+4)*a(n-1) - 5*(n-2)*a(n-2))/n for n > 1.
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(n-1,n-k).
a(n) ~ 1024 * 5^(n - 9/2) * n^(5/2) / (3*sqrt(Pi)). - Vaclav Kotesovec, May 03 2025
a(n) = 14*hypergeom([9/2, 1-n], [2], -4) for n > 0. - Stefano Spezia, May 08 2025

A026387 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026386 that have s(n)=0; also a(n) = T(2n,n).

Original entry on oeis.org

2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0

Views

Author

Keywords

Crossrefs

Essentially the same as A085362.
Cf. A026378.

Formula

a(n) = A085362(n+1), n >= 0. - Hartmut F. W. Hoft, Jul 07 2024

A361817 Expansion of 1/sqrt(1 - 4*x*(1-x)^4).

Original entry on oeis.org

1, 2, -2, -16, -10, 118, 304, -500, -3754, -2488, 30866, 83716, -135568, -1080972, -792876, 9090484, 25788118, -39325156, -335074520, -271779024, 2820643842, 8348113120, -11788972644, -107836934448, -96107852032, 900943403012, 2778574561276, -3596374190416
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^4))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) - 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.

A372109 G.f. A(x) satisfies A(x) = ( (1 - x*A(x))/(1 - 5*x*A(x)) )^(1/2).

Original entry on oeis.org

1, 2, 12, 90, 758, 6850, 64904, 636250, 6399120, 65661250, 684665828, 7233956250, 77278356246, 833291781250, 9057750917944, 99144375156250, 1091857567068742, 12089416175781250, 134501879883249300, 1502857085910156250, 16857310306553767026
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n/2+k-1/2, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+k-1/2,k) * binomial(n-1,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378551(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - 4*x/(1-x))^((n+1)/2).
G.f.: (1/x) * Series_Reversion( x*(1 - 4*x/(1-x))^(1/2) ). (End)

A101894 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k peaks at odd height.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 8, 3, 1, 36, 34, 15, 4, 1, 137, 150, 77, 24, 5, 1, 543, 678, 399, 144, 35, 6, 1, 2219, 3116, 2073, 854, 240, 48, 7, 1, 9285, 14494, 10769, 4996, 1600, 370, 63, 8, 1, 39587, 68032, 55875, 28852, 10387, 2736, 539, 80, 9, 1, 171369, 321590, 289431
Offset: 0

Views

Author

Emeric Deutsch, Dec 20 2004

Keywords

Comments

A Schroeder path of length 2n is a lattice path starting from (0,0), ending at (2n,0), consisting only of steps U=(1,1) (up steps), D=(1,-1) (down steps) and H=(2,0) (level steps) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318). Row sums are the large Schroeder numbers (A006318). Column 0 yields A002212. Column 1 yields A085362.

Examples

			T(3,2)=3 because we have H(UD)(UD), (UD)(UD)H and (UD)H(UD), the peaks at aodd height being shown between parentheses.
Triangle begins:
1;
1,1;
3,2,1;
10,8,3,1;
36,34,15,4,1;
		

Crossrefs

Programs

  • Maple
    G := 1/2/(-z+t*z^2)*(-1+t*z+z-t*z^2+sqrt(1-2*t*z-6*z+8*t*z^2+t^2*z^2-2*t^2*z^3+5*z^2-6*t*z^3+t^2*z^4)): Gser:=simplify(series(G,z=0,13)):P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od;

Formula

G.f.=G=G(t, z) satisfies z(1-tz)G^2-(1-z)(1-tz)G+1-z=0.

A128749 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n having k ascents of length 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 14, 12, 9, 0, 1, 44, 53, 25, 14, 0, 1, 150, 196, 132, 44, 20, 0, 1, 520, 777, 555, 269, 70, 27, 0, 1, 1850, 3064, 2486, 1260, 485, 104, 35, 0, 1, 6696, 12233, 10902, 6264, 2496, 804, 147, 44, 0, 1, 24602, 49096, 47955, 30108, 13600
Offset: 0

Views

Author

Emeric Deutsch, Mar 31 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. An ascent in a path is a maximal sequence of consecutive U steps.
Row sums yield A002212.

Examples

			T(3,1)=5 because we have (U)DUUDD, (U)DUUDL, UUDD(U)D, UUD(U)DD and UUD(U)DL (the ascents of length 1 are shown between parentheses).
Triangle starts:
   1;
   0,  1;
   2,  0,  1;
   4,  5,  0,  1;
  14, 12,  9,  0,  1;
  44, 53, 25, 14,  0,  1;
		

Crossrefs

Programs

  • Maple
    eq:=z*(1+z-t*z)*G^2-(1-t*z+t*z^2-z^2)*G+1-z=0: G:=RootOf(eq,G): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

T(n,0) = A128750(n).
Sum_{k=0..n} k*T(n,k) = A085362(n-1).
G.f.: G = G(t,z) satisfies z(1 + z - tz)G^2 - (1 - tz + tz^2 - z^2)G + 1 - z = 0.

A372104 G.f. A(x) satisfies A(x) = 1/( 1 - 4*x*A(x)/(1-x) )^(1/2).

Original entry on oeis.org

1, 2, 12, 86, 686, 5858, 52404, 484814, 4600652, 44534386, 438034928, 4365350062, 43983695242, 447305878226, 4585518132768, 47335424695142, 491615988964766, 5133343692822146, 53858312462193328, 567501135052136702, 6002857276349252630
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(3*k/2-1/2, k)*binomial(n-1, n-k)/(k+1));

Formula

a(n) = Sum_{k=0..n} 4^k * binomial(3*k/2-1/2,k) * binomial(n-1,n-k)/(k+1).
Previous Showing 21-30 of 30 results.