cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A347281 a(n) = 2^(n - 1)*permanent(M_n)^2 where M_n is the n X n matrix M_n(j, k) = cos(Pi*j*k/n).

Original entry on oeis.org

1, 2, 4, 0, 36, 288, 144, 18432, 11664, 115200, 144400, 0, 808151184, 133693952, 262440000, 299649466368, 7937314520976, 73575242956800, 21204146201616, 6459752448000000, 212406372892224, 8753824001424826368, 195844025123172289600, 152252829159294763008, 26487254903393025000000
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2021

Keywords

Examples

			a(7) = -3384288*cos(Pi/7) - 3460896*sin(Pi/14) - 45888*cos(2*Pi/7) - 28224*cos(15*Pi/7) + 48384*cos(17*Pi/7) + 1706400 + 3458400*sin(3*Pi/14) = 144. - _Chai Wah Wu_, Sep 19 2021
		

Crossrefs

Programs

  • PARI
    P(n)=matpermanent(matrix(n,n,j,k,cos((Pi*j*k)/n)));
    for(k=1,25,print1(round(2^(k-1)*P(k)^2),", "))

A176158 Triangle read by rows: T(n,m) = (1 + 2 * binomial(n,m))^n for 0 <= m <= n, n >= 0.

Original entry on oeis.org

1, 3, 3, 9, 25, 9, 27, 343, 343, 27, 81, 6561, 28561, 6561, 81, 243, 161051, 4084101, 4084101, 161051, 243, 729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729, 2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187
Offset: 0

Views

Author

Roger L. Bagula, Apr 10 2010

Keywords

Comments

Row sums are: 1, 6, 43, 740, 41845, 8490790, 6534766679, 18734219262120, 209617607911694569, 8719076076193077820874, 1429879617351180068934959131, ... .

Examples

			{1},
{3, 3},
{9, 25, 9},
{27, 343, 343, 27},
{81, 6561, 28561, 6561, 81},
{243, 161051, 4084101, 4084101, 161051, 243},
{729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729},
{2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187}.
		

Crossrefs

Columns m=0-1 give: A000244, A085527.

Programs

  • Maple
    f:= proc(n) local m; seq((binomial(n,m)*2+1)^n, m=0..n) end proc:
    for n from 0 to 10 do f(n) od; # Robert Israel, Dec 04 2024
  • Mathematica
    Clear[p, n, m];
    p[x_, n_, m_] := (1 + 2*Binomial[n, m]*x)^n;
    Table[Table[ Apply[Plus, CoefficientList[p[x, n, m], x]], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

T(n,m) = (1 + 2*binomial(n,m))^n.

Extensions

Edited by Robert Israel, Dec 04 2024

A321968 a(n) = 2^n*n!*[x^n] -sqrt(exp(LambertW(-x)))*(LambertW(-x) + 1).

Original entry on oeis.org

-1, 3, 7, 55, 735, 13851, 336743, 10024911, 353109375, 14361853555, 662358958599, 34154042002983, 1947046027041503, 121593475341796875, 8255204941334951655, 605377094064557529151, 47687467918910168180223, 4015909348423983176411619
Offset: 0

Views

Author

Peter Luschny, Dec 07 2018

Keywords

Crossrefs

Cf. A085527.

Programs

  • Maple
    -sqrt(exp(LambertW(-x)))*(LambertW(-x) + 1): series(%, x, 32):
    seq(2^n*n!*coeff(%, x, n), n=0..17);
  • Mathematica
    a[n_] := 2^n n! SeriesCoefficient[-Sqrt[Exp[ProductLog[-x]]] (ProductLog[ -x ] + 1), {x, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 21 2019 *)

A364870 Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Aug 11 2023

Keywords

Examples

			The array begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,    9,    16,    25,    36,     49, ...
    27,   64,   125,   216,   343,    512, ...
   256,  625,  1296,  2401,  4096,   6561, ...
  3125, 7776, 16807, 32768, 59049, 100000, ...
  ...
		

Crossrefs

Cf. A000012 (n=0), A000169, A000272, A000312 (k=0), A007830 (k=3), A008785 (k=4), A008786 (k=5), A008787 (k=6), A031973 (antidiagonal sums), A052746 (2nd superdiagonal), A052750, A062971 (main diagonal), A079901 (read by descending antidiagonals), A085527 (1st superdiagonal), A085528 (1st subdiagonal), A085532, A099753.

Programs

  • Mathematica
    A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten

Formula

E.g.f. of k-th column: LambertW(-x)^k/(x^k*(1 + LambertW(-x))).

A376067 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^2)) * (1 - A(x)).

Original entry on oeis.org

0, 1, 3, 26, 372, 7424, 190150, 5946576, 219643592, 9357076704, 451643892408, 24359462797680, 1451906224395792, 94769186402062080, 6723078079388867040, 515064037555614081024, 42380187502270667120640, 3727409807764337879016960
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (2*n-2)!/(2*n-k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (2*n-2)!/(2*n-k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x / (1 - x))) ).
Previous Showing 11-15 of 15 results.