cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A056072 a(n) = floor(e^e^ ... ^e), with n e's.

Original entry on oeis.org

1, 2, 15, 3814279
Offset: 0

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

The next term is too large to include.
From Vladimir Reshetnikov, Apr 27 2013: (Start)
a(4) = 2331504399007195462289689911...2579139884667434294745087021 (1656521 decimal digits in total), given by initial segment of A085667.
a(5) has more than 10^10^6 decimal digits.
a(6) has more than 10^10^10^6 decimal digits. (End)

Crossrefs

Programs

A225064 Decimal expansion of the fractional part of e^e^e^e.

Original entry on oeis.org

2, 2, 1, 2, 0, 2, 9, 9, 9, 7, 9, 2, 1, 1, 7, 6, 5, 3, 8, 9, 2, 4, 9, 1, 9, 3, 4, 2, 1, 5, 9, 9, 1, 7, 9, 5, 6, 8, 5, 3, 2, 6, 3, 1, 9, 4, 9, 3, 5, 1, 4, 8, 2, 6, 1, 4, 3, 8, 9, 7, 6, 7, 1, 4, 5, 8, 8, 2, 3, 9, 1, 2, 5, 0, 3, 7, 4, 7, 9, 4, 3, 8, 0, 2, 1, 4, 7, 9, 4, 9, 4, 9, 4, 6, 7, 0, 7, 4, 7, 3, 3, 5, 5, 9, 7, 0, 2, 5, 7, 7, 7, 3, 1, 4, 0, 2, 9, 1, 7, 4
Offset: 0

Views

Author

Vladimir Reshetnikov, Apr 26 2013

Keywords

Comments

It was conjectured (but remains unproved) that this sequence is infinite and aperiodic.

Examples

			frac(e^e^e^e) = 0.2212029997921176538924919342....
		

Crossrefs

Cf. A085667 (includes integer part).

Programs

  • Mathematica
    base = 10; terms = 120; First[RealDigits[FractionalPart[E^E^E^E], base, terms]]

Formula

a(n) = A085667(n+1656521), where 1656521 is the length of the integer part of e^e^e^e.

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014

A202949 Decimal expansion of (e^e)^(e^e), where e=exp(1).

Original entry on oeis.org

7, 7, 6, 4, 8, 6, 5, 1, 7, 9, 1, 5, 8, 0, 8, 4, 5, 7, 3, 8, 2, 6, 2, 7, 0, 7, 2, 1, 4, 4, 8, 0, 1, 1, 1, 2, 6, 9, 8, 1, 3, 7, 3, 8, 7, 4, 0, 8, 9, 3, 7, 3, 3, 3, 6, 1, 0, 9, 8, 0, 2, 3, 7, 7, 6, 5, 6, 2, 9, 9, 8, 3, 3, 8, 8, 7, 4, 6, 9, 6, 4, 8, 1, 7, 9, 2, 5, 8, 5, 4, 7, 2, 2, 8, 9
Offset: 18

Views

Author

M. F. Hasler, Dec 26 2011

Keywords

Examples

			776486517915808457.38262707214480111269813738740893733361098023776562998338874696481792585472289...
		

Crossrefs

Cf. A073226, A073227, A073228, A085667, A181180, A073232. - M. F. Hasler, Dec 26 2011

Programs

  • Mathematica
    RealDigits[#^#&/@(E^E),10,120][[1]] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    default(realprecision,99); t=exp(1); t=t^t; t=t^t

Formula

A361100 Decimal expansion of 2^(2^(2^(2^2))) = 2^^5.

Original entry on oeis.org

2, 0, 0, 3, 5, 2, 9, 9, 3, 0, 4, 0, 6, 8, 4, 6, 4, 6, 4, 9, 7, 9, 0, 7, 2, 3, 5, 1, 5, 6, 0, 2, 5, 5, 7, 5, 0, 4, 4, 7, 8, 2, 5, 4, 7, 5, 5, 6, 9, 7, 5, 1, 4, 1, 9, 2, 6, 5, 0, 1, 6, 9, 7, 3, 7, 1, 0, 8, 9, 4, 0, 5, 9, 5, 5, 6, 3, 1, 1, 4, 5, 3, 0, 8, 9, 5, 0
Offset: 19730

Views

Author

Marco Ripà, Mar 03 2023

Keywords

Comments

2^0 = 1, 2^1 = 2, 2^2 = 4, 2^2^2 = 2^^3 = (2^2)^2 = 16,
2^2^2^2 = 2^^4 = (((2^2)^2)^2)^2 = 65536
so that 2^2^2^2^2 = 2^^5 = 2^(2^(2^(2^2))) = 2^65536 = 20035299304068464649790723515602557504478254755697514192650169737108940595563...

Examples

			2003529930406846464979072351560255750447825475569751419265016973710894059556311453089506130880933348
(...19529 digits omitted...)
5775699146577530041384717124577965048175856395072895337539755822087777506072339445587895905719156736.
The above example line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parentheses.
		

Crossrefs

Programs

  • Mathematica
    nbrdgt = 100; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[2, 2^2^2^2]
    IntegerDigits[2^65536][[;;100]] (* Paolo Xausa, Jan 31 2024 *)
  • Python
    def A361100(n): return (1<<(1<<(1<<(1<<(1<<1)))))//10**(39458-n)%10 # Chai Wah Wu, Apr 03 2023

Formula

Equals 2^2^2^2^2 = 2^^5 = (((((((((((((((2^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2.

A171990 Least integer a(n) for which the iterated function log, iterated n times, is defined.

Original entry on oeis.org

1, 2, 3, 16, 3814280
Offset: 1

Views

Author

Keywords

Comments

Log(a(1)) is defined if a(1) > 0, so a(1) = 1.
Log(log(a(2))) is defined if log(a(2)) > 0 => a(2) > 1 => a(2) = 2.
The sequence grows rapidly: a(6) = 2.33150...10^1656520, and is too large to include here.

Examples

			a(2) = 2 because log(log(2)) is defined and log(log(1)) is not;
a(3) = 3 because log(log(log(3))) is defined;
a(4) = 16 because log(log(log(log(16)))) is defined.
From _Robert G. Wilson v_, Jul 05 2022: (Start)
a(3) = ceiling(A001113).
a(4) = ceiling(A073226).
a(5) = ceiling(A073227).
a(6) = ceiling(A085667). (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(1, my(s=k, i=0); while(s > 0, s=log(s); if(s > 0, i++)); if(i==n-1, return(k)); k++) \\ Felix Fröhlich, Nov 22 2015

Formula

For n > 2, a(n) = ceiling(e^(e^(...))) where e appears n-2 times.
Previous Showing 11-15 of 15 results.