cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A173589 Integers whose binary representation contains exactly three 1's, no two 1's being adjacent.

Original entry on oeis.org

21, 37, 41, 42, 69, 73, 74, 81, 82, 84, 133, 137, 138, 145, 146, 148, 161, 162, 164, 168, 261, 265, 266, 273, 274, 276, 289, 290, 292, 296, 321, 322, 324, 328, 336, 517, 521, 522, 529, 530, 532, 545, 546, 548, 552, 577, 578, 580, 584, 592, 641, 642, 644, 648
Offset: 1

Views

Author

David Koslicki (koslicki(AT)math.psu.edu), Feb 22 2010

Keywords

Comments

Subsequence of A014311. [R. J. Mathar, Feb 24 2010]
A000120(a(n))=3; A023416(a(n))>1; 1 < A087116(a(n))<=3. [Reinhard Zumkeller, Mar 11 2010]

Examples

			a(1) = 21 = 10101_2.
a(2) = 37 = 100101_2.
a(3) = 41 = 101001_2.
		

Crossrefs

Programs

  • Maple
    seq(seq(seq(2^a+2^b+2^c, c=0..b-2),b=2..a-2),a=4..10); # Robert Israel, Dec 19 2016
  • Mathematica
    e31sQ[n_]:=Module[{idn2=IntegerDigits[n,2]},Total[idn2]==3 && SequenceCount[ idn2,{1,1}]==0]; Select[Range[700],e31sQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 20 2018 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A173589(n): return (1<<(r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1)+1)+(1<Chai Wah Wu, Apr 07 2025

Extensions

More terms from R. J. Mathar, Feb 24 2010

A087120 Smallest numbers having in binary representation exactly n maximal groups of consecutive zeros.

Original entry on oeis.org

1, 0, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 14 2003

Keywords

Comments

A087116(a(n))=n and A087116(k)
For n>1, a(n) = A020988(n-1).

Crossrefs

Programs

  • Mathematica
    Join[{1,0},NestList[4#+2&,10,25]] (* Harvey P. Dale, Apr 20 2019 *)

Formula

a(0)=1, a(1)=0, a(2)=10, a(n)=4*a(n-1)+2.

A087119 Numbers having more than one maximal group of consecutive zeros in binary representation of n.

Original entry on oeis.org

10, 18, 20, 21, 22, 26, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 58, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 114, 116, 117, 118, 122
Offset: 1

Author

Reinhard Zumkeller, Aug 14 2003

Keywords

Comments

A087116(a(n)) > 1.

Crossrefs

A306874 Lexicographically earliest sequence of distinct positive terms such that the binary representation of the bitwise-OR of two consecutive terms has exactly one run of consecutive zeros.

Original entry on oeis.org

1, 4, 2, 6, 8, 3, 9, 5, 12, 10, 11, 16, 7, 17, 13, 20, 14, 18, 19, 21, 22, 23, 32, 15, 33, 24, 25, 26, 27, 34, 28, 29, 36, 30, 38, 35, 37, 39, 40, 47, 41, 46, 43, 44, 48, 45, 42, 49, 50, 51, 52, 55, 53, 54, 56, 57, 58, 59, 64, 31, 65, 60, 61, 68, 62, 66, 67
Offset: 1

Author

Rémy Sigrist, Mar 14 2019

Keywords

Comments

This sequence is a variant of A306869.

Examples

			The first terms, alongside the binary representation of a(n) OR a(n+1), are:
  n   a(n)  bin(a(n) OR a(n+1))
  --  ----  -------------------
   1     1                101
   2     4                110
   3     2                110
   4     6               1110
   5     8               1011
   6     3               1011
   7     9               1101
   8     5               1101
   9    12               1110
  10    10               1011
  11    11              11011
  12    16              10111
  13     7              10111
  14    17              11101
  15    13              11101
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A087116(a(n) OR a(n+1)) = 1.
Previous Showing 11-14 of 14 results.