A090032
Number of configurations of the 6 X 6 variant of Sam Loyd's sliding block 15-puzzle ("35-puzzle") that require a minimum of n moves to be reached, starting with the empty square in one of the corners.
Original entry on oeis.org
1, 2, 4, 10, 26, 66, 171, 440, 1112, 2786, 6820, 16720, 41106, 100856, 245793, 597030, 1441292, 3469486, 8304526, 19832076, 47110238, 111669014
Offset: 0
-
# uses alst(), swap() in A089473
start, shape = "-123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", (6, 6)
print(alst(start, shape, maxd=16)) # Michael S. Branicky, Jan 02 2021
A090165
Number of configurations of Sam Loyd's sliding block 15-puzzle that require a minimum of n moves to be reached, starting with the empty square at one of the 8 non-corner boundary squares.
Original entry on oeis.org
1, 3, 6, 14, 32, 66, 134, 280, 585, 1214, 2462, 4946, 9861, 19600, 38688, 76086, 148435, 288098, 554970, 1062628, 2016814, 3800682, 7093209, 13127364, 24053454, 43657576, 78382622, 139237375
Offset: 0
-
# uses alst(), swap() in A089473
start, shape = "1-23456789ABCDEF", (4, 4)
print(alst(start, shape, maxd=16)) # Michael S. Branicky, Jan 02 2021
A089474
Number of configurations of the sliding block 8-puzzle that require a minimum of n moves to be reached, starting with the empty square in the center.
Original entry on oeis.org
1, 4, 8, 8, 16, 32, 60, 72, 136, 200, 376, 512, 964, 1296, 2368, 3084, 5482, 6736, 11132, 12208, 18612, 18444, 24968, 19632, 22289, 13600, 11842, 4340, 2398, 472, 148
Offset: 0
Starting with
123
4-5
678
two of the 148 configurations that require the maximum of 30 moves are
476 ... -86
2-8 and 724
351 ... 351
A090163
Triangle T(j,k) read by rows, where T(j,K)=number of different configurations having the largest required number of moves S(j,k)=A090033(n) in optimal solutions of the j X k generalization of Sam Loyd's sliding block 15-puzzle, starting with the empty square in a corner.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 18
Offset: 1
a(5)=T(3,2)=1 because the 3*2 sliding block puzzle has only one configuration requiring the maximum solution path length A090033(5)=21.
A090034(21)=1, see link.
A090164
Number of configurations of Sam Loyd's sliding block 15-puzzle that require a minimum of n moves to be reached, starting with the empty square at one of the 4 central squares.
Original entry on oeis.org
1, 4, 10, 20, 38, 80, 174, 372, 762, 1540, 3072, 6196, 12356, 24516, 48179, 94356, 183432, 355330, 682250, 1301874, 2460591, 4617322, 8580175, 15815664, 28854386, 52154316, 93214030
Offset: 0
-
See link in A089473.
-
# uses alst(), swap() in A089473
start, shape = "12345-6789ABCDEF", (4, 4)
print(alst(start, shape, maxd=15)) # Michael S. Branicky, Jan 02 2021
A151943
Maximal number of moves required for the 2 X n generalization of the sliding block 15-puzzle (or fifteen-puzzle).
Original entry on oeis.org
1, 6, 21, 36, 55, 80, 108, 140
Offset: 1
Anton Kulchitsky (kulchits(AT)arsc.edu), Aug 14 2009, Aug 16 2009
a(7)-a(8) from Table III of Richard Korf's work by
Tomas Rokicki, Aug 17 2011
A151944
Square array read by antidiagonals: T(m,n) = maximal number of moves required for the m X n generalization of the sliding block 15-puzzle (or fifteen-puzzle).
Original entry on oeis.org
0, 1, 1, 2, 6, 2, 3, 21, 21, 3, 4, 36, 31, 36, 4, 5, 55, 53, 53, 55, 5, 6, 80, 84, 80, 84, 80, 6, 7, 108
Offset: 1
Anton Kulchitsky (kulchits(AT)arsc.edu), Aug 14 2009, Aug 16 2009
Array begins:
.n\m...1...2...3...4...5...6...7...8...9
.----------------------------------------
.1.|...0...1...2...3...4...5...6...7...8
.2.|...1...6..21..36..55..80.108.140
.3.|...2..21..31..53..84
.4.|...3..36..53..80
.5.|...4..55..84
.6.|...5..80
.7.|...6.108
.8.|...7.140
.9.|...8
Cf.
A090033 same as this sequence, but written as triangle.
-
# alst(), moves(), swap() in A089473
def T(m, n): # chr(45) is '-'
start, shape = "".join(chr(45+i) for i in range(m*n)), (m, n)
return len(alst(start, shape))-1
def auptodiag(maxd):
for d in range(1, maxd+1):
for m in range(1, d+1):
n = d-m+1
print(T(m, d-m+1), end=", ")
auptodiag(5) # Michael S. Branicky, Aug 02 2021
Extensions from Korf's 2008 publication, with corrections, Tomas Rokicki, Aug 17 2011
A264040
Number of possible permutations of the n X n generalization of the sliding block 15-puzzle.
Original entry on oeis.org
1, 12, 181440, 10461394944000, 7755605021665492992000000, 185996663394950608733999724075417600000000, 304140932017133780436126081660647688443776415689605120000000000, 63443466092942082051716694667580740401432758087272596099400947187607352115200000000000000
Offset: 1
a(4) = 10461394944000 because the standard 4 X 4 version of the 15-puzzle has exactly 10461394944000 permutations that can be reached by sliding the tiles.
- Eric Weisstein's World of Mathematics, 15 Puzzle
Comments