cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A063531 Numbers k such that sigma(k) + 1 is a square.

Original entry on oeis.org

2, 7, 8, 14, 15, 23, 32, 33, 35, 47, 54, 56, 57, 60, 72, 78, 79, 84, 87, 92, 95, 120, 123, 124, 128, 138, 143, 154, 165, 167, 174, 184, 190, 196, 213, 223, 235, 242, 252, 253, 258, 267, 295, 312, 315, 319, 323, 327, 348, 359, 375, 378, 380, 393, 412, 423, 439
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Comments

Numbers k such that A000203(k) = -1 + m^2 for some m.

Examples

			If k = p(p+2) is a product of twin primes (from A037074), then sigma(k) + 1 = 1 + (p+1)(p+3) = (p+2)^2, square of the larger twin. Other solutions can be either special primes = m^2 - 2 or composites like 120: sigma(120) = 120 + 60 + ... + 1 = 360 = 19^2 - 1. Square number solution is, e.g., 196: sigma(196) = 399 = 20^2 - 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],IntegerQ[Sqrt[DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Jul 02 2021 *)
  • PARI
    { n=0; for (a=1, 10^9, if (issquare(sigma(a) + 1), write("b063531.txt", n++, " ", a); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009

Extensions

Minor edits from Franklin T. Adams-Watters, Aug 29 2009

A336924 a(n) = spf(1+sigma(n)), where spf is the smallest prime factor and sigma is the sum of divisors function.

Original entry on oeis.org

2, 2, 5, 2, 7, 13, 3, 2, 2, 19, 13, 29, 3, 5, 5, 2, 19, 2, 3, 43, 3, 37, 5, 61, 2, 43, 41, 3, 31, 73, 3, 2, 7, 5, 7, 2, 3, 61, 3, 7, 43, 97, 3, 5, 79, 73, 7, 5, 2, 2, 73, 3, 5, 11, 73, 11, 3, 7, 61, 13, 3, 97, 3, 2, 5, 5, 3, 127, 97, 5, 73, 2, 3, 5, 5, 3, 97, 13, 3, 11, 2, 127, 5, 3, 109, 7, 11, 181, 7, 5, 113, 13
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2020

Keywords

Crossrefs

Programs

  • PARI
    A336924(n) = (factor((1+sigma(n)))[1, 1]);

Formula

a(n) = A020639(1+A000203(n)) = A020639(A088580(n)).

A336925 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336147(1+sigma(i)) = A336147(1+sigma(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 4, 8, 9, 2, 2, 1, 7, 10, 11, 12, 13, 14, 2, 15, 1, 12, 16, 17, 18, 19, 13, 1, 3, 20, 3, 21, 22, 15, 17, 23, 12, 24, 9, 25, 26, 19, 3, 2, 27, 28, 19, 13, 20, 29, 19, 29, 5, 23, 15, 4, 11, 24, 30, 1, 25, 31, 32, 33, 24, 31, 19, 6, 9, 34, 2, 35, 24, 4, 5, 36, 37, 33, 25, 9, 38, 39, 29, 40, 23, 41, 42, 4, 43, 31, 29, 44, 13, 45, 46, 47, 48, 49, 30
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the function f(n) = A336147(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336691(i) = A336691(j),
a(i) = a(j) => A336924(i) = A336924(j).

Crossrefs

Cf. also A336926.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    Aux336147(n) = [A020639(n),A278221(n)];
    v336925 = rgs_transform(vector(up_to, n, Aux336147(1+sigma(n))));
    A336925(n) = v336925[n];

A368582 a(n) = floor((sigma(n) + 1) / 2).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 4, 8, 7, 9, 6, 14, 7, 12, 12, 16, 9, 20, 10, 21, 16, 18, 12, 30, 16, 21, 20, 28, 15, 36, 16, 32, 24, 27, 24, 46, 19, 30, 28, 45, 21, 48, 22, 42, 39, 36, 24, 62, 29, 47, 36, 49, 27, 60, 36, 60, 40, 45, 30, 84, 31, 48, 52, 64, 42, 72, 34, 63
Offset: 1

Views

Author

Peter Luschny, Dec 31 2023

Keywords

Crossrefs

Cf. A000203, A000079 (2^n), A000396 (perfect), A088580, A317306, A368207 (Bacher).

Programs

  • Julia
    using Nemo
    A368582(n::Int) = div(divisor_sigma(n, 1) + 1, 2)
    println([A368582(n) for n in 1:68])
    
  • Mathematica
    Array[Floor[(DivisorSigma[1, #] + 1)/2] &, 120] (* Michael De Vlieger, Dec 31 2023 *)
  • PARI
    a(n) = (sigma(n)+1)\2; \\ Michel Marcus, Jan 03 2024

Formula

a(p) = (p + 1) / 2 for all odd prime p.
a(n) = n <=> n term of union of A000079 and A000396. (If there are no odd perfect numbers also of A317306).
a(n) = floor(A088580(n)/2). - Omar E. Pol, Dec 31 2023
Previous Showing 21-24 of 24 results.