A144110 Period 6: repeat [2, 2, 2, 1, 1, 1].
2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Programs
-
Magma
[1+(Floor((-n-1)/3) mod 2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 04 2014
-
Maple
A144110:=n->1+(floor((-n-1)/3) mod 2): seq(A144110(n), n=0..100); # Wesley Ivan Hurt, Sep 04 2014
-
Mathematica
Table[1 + Mod[Floor[(-n - 1)/3], 2], {n, 0, 100}] (* Wesley Ivan Hurt, Sep 04 2014 *)
-
PARI
a(n)=[2,2,2,1,1,1][n%6+1] \\ Edward Jiang, Sep 04 2014
Formula
G.f.: (1+2*x^3)/((1-x)*(1+x)*(1-x+x^2)); a(n) = 3/2-(-1)^n/6-A057079(n)/3. [R. J. Mathar, Sep 17 2008]
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3; a(n) = 1 + mod(floor((-n-1)/3), 2); a(n) = A088911(n) + 1. - Wesley Ivan Hurt, Sep 04 2014
a(n) = (9 + cos(n*Pi) + 2*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 23 2016
Comments