cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A266087 Alternating sum of 11-gonal (or hendecagonal) numbers.

Original entry on oeis.org

0, -1, 10, -20, 38, -57, 84, -112, 148, -185, 230, -276, 330, -385, 448, -512, 584, -657, 738, -820, 910, -1001, 1100, -1200, 1308, -1417, 1534, -1652, 1778, -1905, 2040, -2176, 2320, -2465, 2618, -2772, 2934, -3097, 3268, -3440, 3620, -3801, 3990, -4180
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Crossrefs

Programs

  • Magma
    [(18*(-1)^n*n^2 + 4*(-1)^n*n - 7*(-1)^n + 7)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Mathematica
    Table[((18 n^2 + 4 n - 7) (-1)^n + 7)/8, {n, 0, 43}]
    CoefficientList[Series[(x - 8 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    Accumulate[Times@@@Partition[Riffle[PolygonalNumber[11,Range[0,50]],{1,-1},{2,-1,2}],2]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{-2,0,2,1},{0,-1,10,-20},50] (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-8*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 8*x)/((1 - x)*(1 + x)^3).
a(n) = ((18*n^2 + 4*n - 7)*(-1)^n + 7)/8.
a(n) = Sum_{k = 0..n} (-1)^k*A051682(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
E.g.f.: (1/4)*(9*x^2 - 11*x)*cosh(x) - (1/4)*(9*x^2 - 11*x - 7)*sinh(x). - G. C. Greubel, Jan 27 2016

A266088 Alternating sum of 12-gonal (or dodecagonal) numbers.

Original entry on oeis.org

0, -1, 11, -22, 42, -63, 93, -124, 164, -205, 255, -306, 366, -427, 497, -568, 648, -729, 819, -910, 1010, -1111, 1221, -1332, 1452, -1573, 1703, -1834, 1974, -2115, 2265, -2416, 2576, -2737, 2907, -3078, 3258, -3439, 3629, -3820, 4020, -4221, 4431, -4642
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Comments

More generally, the ordinary generating function for the alternating sum of k-gonal numbers is -x*(1 - (k - 3)*x)/((1 - x)*(1 + x)^3).

Crossrefs

Programs

  • Magma
    [1+(-1)^n*(5*n^2+n-2)/2: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Mathematica
    Table[1 + (-1)^n (5 n^2 + n - 2)/2, {n, 0, 43}]
    CoefficientList[Series[-x (1 - 9 x)/((1 - x) (1 + x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-9*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 9*x)/((1 - x)*(1 + x)^3).
a(n) = 1 + (-1)^n*(5*n^2 + n - 2)/2.
a(n) = Sum_{k = 0..n} (-1)^k*A051624(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
Previous Showing 11-12 of 12 results.