A316789
Number of same-tree-factorizations of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1
The a(64) = 14 same-tree-factorizations:
64
(8*8)
(4*4*4)
(8*(2*2*2))
((2*2*2)*8)
(4*4*(2*2))
(4*(2*2)*4)
((2*2)*4*4)
(2*2*2*2*2*2)
(4*(2*2)*(2*2))
((2*2)*4*(2*2))
((2*2)*(2*2)*4)
((2*2*2)*(2*2*2))
((2*2)*(2*2)*(2*2))
Cf.
A001055,
A001597,
A001678,
A003238,
A007916,
A052409,
A052410,
A067824,
A089723,
A281118,
A281145,
A294336,
A316790.
-
a[n_]:=1+Sum[a[n^(1/d)]^d,{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]
Array[a,100]
-
a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, a(z^(e/d))^d)))} \\ Andrew Howroyd, Nov 18 2018
A316790
Number of orderless same-tree-factorizations of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1
The a(64) = 9 orderless same-tree-factorizations:
64
(8*8)
(4*4*4)
(4*4*(2*2))
(8*(2*2*2))
(2*2*2*2*2*2)
(4*(2*2)*(2*2))
((2*2*2)*(2*2*2))
((2*2)*(2*2)*(2*2))
Cf.
A001055,
A001597,
A003238,
A052409,
A052410,
A067824,
A089723,
A281118,
A281145,
A289078,
A292504,
A316789.
-
a[n_]:=1+Sum[Binomial[a[n^(1/d)]+d-1,d],{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]
Array[a,100]
-
a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, binomial(a(z^(e/d)) + d - 1, d))))} \\ Andrew Howroyd, Nov 18 2018
A327695
Number of non-constant factorizations of n whose distinct factors are pairwise coprime.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 2, 0, 4, 0, 2, 2, 1, 0, 3, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 6, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 4, 0, 1, 2, 2, 1, 4, 0, 3, 0, 1, 0, 6, 1, 1, 1
Offset: 1
The factorizations of 6, 12, 30, 48, 60, 180, and 210:
(2*3) (3*4) (5*6) (3*16) (3*20) (4*45) (3*70)
(2*2*3) (2*15) (3*4*4) (4*15) (5*36) (5*42)
(3*10) (2*2*2*2*3) (5*12) (9*20) (6*35)
(2*3*5) (3*4*5) (4*5*9) (7*30)
(2*2*15) (5*6*6) (10*21)
(2*2*3*5) (2*2*45) (14*15)
(3*3*20) (2*105)
(2*2*5*9) (5*6*7)
(3*3*4*5) (2*3*35)
(2*2*3*3*5) (2*5*21)
(2*7*15)
(3*5*14)
(3*7*10)
(2*3*5*7)
Factorizations that are constant or whose distinct parts are pairwise coprime are counted by
A327399.
Numbers with pairwise coprime distinct prime indices are
A304711.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Select[facs[n],CoprimeQ@@Union[#]&]],{n,100}]
A346403
a(1)=1; for n>1, a(n) gives the sum of the exponents in the different ways to write n as n = x^y, 2 <= x, 1 <= y.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1
Offset: 1
4 = 2^2, gcd(2) = 2, sigma(2) = 3, so a(4) = 3. The representations are 4^1 and 2^2, and 1 + 2 = 3.
144 = 2^4 * 3^2, gcd(4,2) = 2, sigma(2) = 3, so a(144) = 3. The representations are 144^1 and 12^2, and 1 + 2 = 3.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Abdu Awel and M. Küçükaslan, A Note on Statistical Limit and Cluster Points of the Arithmetical Functions a_p(n), gamma(n), and tau(n) in the Sense of Density, Journal of the Indonesian Mathematical Society, Vol. 26, No. 2 (2020), pp. 224-233.
- Zoltán Fehér, Béla László, Martin Mačaj and Tibor Šalát, Remarks on arithmetical functions a_p(n), gamma(n), tau(n), Annales Mathematicae et Informaticae, Vol. 33 (2006), pp. 35-43.
- Jan Mycielski, Sur les représentations des nombres naturels par des puissances à base et exposant naturels, Colloquium Mathematicum, Vol. 2 (1951), pp. 254-260.
-
A253641:=proc(n) if n in {0,1} then 1 else igcd(map(i->i[2], ifactors(n)[2])[]); fi; end: seq(numtheory[sigma](A253641(n)), n=1..120); # Ridouane Oudra, Jun 04 2025
-
a[n_] := DivisorSigma[1, GCD @@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
-
a(n) = if (n==1, 1, sigma(gcd(factor(n)[,2]))); \\ Michel Marcus, Jul 16 2021
A363265
Number of integer factorizations of n with a unique mode.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 4, 1, 1, 3, 1, 1, 1
Offset: 1
The a(n) factorizations for n = 2, 4, 16, 24, 48, 72:
(2) (4) (16) (24) (48) (72)
(2*2) (4*4) (2*2*6) (3*4*4) (2*6*6)
(2*2*4) (2*2*2*3) (2*2*12) (3*3*8)
(2*2*2*2) (2*2*2*6) (2*2*18)
(2*2*3*4) (2*2*2*9)
(2*2*2*2*3) (2*2*3*6)
(2*3*3*4)
(2*2*2*3*3)
A089723 counts constant factorizations.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[facs[n],Length[modes[#]]==1&]],{n,100}]
A381872
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
{{1,1,1,1,2,2}}
{{2,2},{1,1,1,1}}
{{1,1,2},{1,1,2}}
{{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
{{1,1,1,1,2,2,2,2}}
{{2,2,2},{1,1,1,1,2}}
{{1,1,2,2},{1,1,2,2}}
{{2,2},{2,2},{1,1,1,1}}
{{2,2},{1,1,2},{1,1,2}}
{{1,2},{1,2},{1,2},{1,2}}
{{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
With equal blocks instead of sums we have
A089723.
Positions of terms > 1 are
A321454.
With distinct instead of equal sums we have
A381637, before sums
A321469.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]
Comments