cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A354765 a(n) is a binary encoded version of A355057(n).

Original entry on oeis.org

0, 0, 1, 3, 6, 7, 13, 15, 27, 59, 122, 123, 243, 499, 501, 511, 1007, 2031, 4047, 8143, 16271, 32655, 65422, 65423, 130831, 261903, 523791, 1048079, 2096651, 2096671, 4193813, 4193815, 4193311, 8387615, 16775199, 33552415, 67104799, 134213663, 268427295, 536862751, 1073725471, 2147467295, 4294934559, 8589901855, 17179803679
Offset: 1

Views

Author

Keywords

Comments

Let plist = list of forbidden primes for A090252(n); A355057(n) is the product of these primes. Then a(n) = Sum of 2^(i-1) over all prime(i) in plist.
Conversely, if a(n) has binary expansion a(n) = Sum b(i)*2^i, b(i) = 0 or 1, then plist consists of {prime(i+1) such that b(i) = 1}.

Examples

			For n = 7 the forbidden primes are 2, 5, 7 = prime(1), prime(3) and prime(4). Their product is A355057(7) = 70. Then a(7) = 2^0 + 2^2 + 2^3 = 13.
		

Crossrefs

Programs

  • Maple
    # To get first M terms:
    with(numtheory);
    M:=20; ans:=[0,0,1];
    for i from 4 to M do
    S:={}; j1:=floor((i+1)/2); j2:=i-1;
      for j from j1 to j2 do S:={op(S), op(factorset(b252[j]))} od:
    plis:=sort(convert(S,list));
    t3:=0; for ii from 1 to nops(plis) do p:=plis[ii]; p2:=pi(p); t3:=t3+2^(p2-1); od:
    ans:=[op(ans),t3];
    od:
    ans;
  • Python
    from math import gcd, lcm
    from itertools import count, islice
    from collections import deque
    from sympy import primepi, primefactors
    def A354765_gen(): # generator of terms
        aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
        yield 0
        while True:
            for m in count(c):
                if m not in aset and gcd(m,b) == 1:
                    yield sum(2**(primepi(p)-1) for p in primefactors(b))
                    aset.add(m)
                    aqueue.append(m)
                    if f: aqueue.popleft()
                    b = lcm(*aqueue)
                    f = not f
                    while c in aset:
                        c += 1
                    break
    A354765_list = list(islice(A354765_gen(),20)) # Chai Wah Wu, Jun 18 2022

A355014 Index of A355012(n) in A246547.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 8, 11, 7, 14, 12, 17, 10, 19, 21, 9, 24, 18, 25, 13, 28, 29, 30, 34, 15, 36, 39, 41, 43, 44, 27, 45, 48, 38, 16, 53, 54, 55, 22, 57, 49, 51, 52, 33, 71, 76, 77, 60, 63, 64, 65, 67, 23, 68, 70, 88, 20, 89, 90, 72, 75, 96, 97, 98, 42, 79, 80, 81
Offset: 1

Views

Author

Michael De Vlieger, Jun 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{s = Map[ToExpression@ StringSplit[#][[-1]] &, Import["https://oeis.org/A246547/b246547.txt", "Data"][[2 ;; -1]]]}, Map[FirstPosition[s, #][[1]] &, Select[Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 8000, -1]], CompositeQ[#] && PrimePowerQ[#] &] ]]

A355892 a(n) = binary expansion of A354169(n).

Original entry on oeis.org

0, 1, 10, 100, 1000, 11, 10000, 100000, 1000000, 1100, 10000000, 100000000, 1000000000, 10001, 10000000000, 100010, 100000000000, 1000000000000, 10000000000000, 1000100, 100000000000000, 10001000, 1000000000000000, 10000000000000000, 100000000000000000, 1100000000, 1000000000000000000, 10000000000000000000, 100000000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 23 2022

Keywords

Examples

			The terms, right-justified, for comparison with A355893.
...................................0
...................................1
..................................10
.................................100
................................1000
..................................11
...............................10000
..............................100000
.............................1000000
................................1100
............................10000000
...........................100000000
..........................1000000000
...............................10001
.........................10000000000
..............................100010
........................100000000000
.......................1000000000000
......................10000000000000
.............................1000100
.....................100000000000000
............................10001000
....................1000000000000000
...................10000000000000000
..................100000000000000000
..........................1100000000
.................1000000000000000000
................10000000000000000000
...............100000000000000000000
.........................10000000001
..............1000000000000000000000
...............................10010
.............10000000000000000000000
........................100000100000
............100000000000000000000000
...........1000000000000000000000000
..........10000000000000000000000000
......................11000000000000
.........100000000000000000000000000
........1000000000000000000000000000
.......10000000000000000000000000000
.....................100000000000100
......100000000000000000000000000000
.............................1001000
.....1000000000000000000000000000000
....................1000000010000000
....10000000000000000000000000000000
...100000000000000000000000000000000
..1000000000000000000000000000000000
..................110000000000000000
		

Crossrefs

A355065 Lexicographically earliest sequence of distinct positive integers such that if m and n are distinct and not coprime, then a(n) does not belong to the interval ceiling(a(m)/2)..2*a(m).

Original entry on oeis.org

1, 2, 3, 5, 4, 11, 6, 23, 24, 47, 7, 95, 8, 191, 192, 383, 9, 767, 10, 1535, 1536, 3071, 12, 6143, 3072, 12287, 12288, 24575, 13, 49151, 14, 98303, 98304, 196607, 98305, 393215, 15, 786431, 786432, 1572863, 16, 3145727, 17, 6291455, 6291456, 12582911, 18
Offset: 1

Views

Author

Rémy Sigrist, Jun 17 2022

Keywords

Comments

This sequence is a permutation of the nonnegative integers (when n is prime, a(n) is the least value not yet in the sequence).
The inverse sequence (A355066) has similarities with the Two-Up sequence (A090252) as A355066(n) is coprime to the next n terms (and to the floor(n/2) previous terms).
Note that the relation "u does not belong to the interval ceiling(v/2)..2*v" is symmetrical (for u, v > 0).

Examples

			The first terms, alongside the forbidden values, are:
  n   a(n)  Forbidden values
  --  ----  ---------------------------------------------------
   1     1  None
   2     2  None
   3     3  None
   4     5  1..4 (from m=2)
   5     4  None
   6    11  1..4 (from m=2), 2..6 (from m=3), 3..10 (from m=4)
   7     6  None
   8    23  1..4 (from m=2), 3..10 (from m=4), 6..22 (from m=6)
   9    24  2..6 (from m=3), 6..22 (from m=6)
  10    47  1..4 (from m=2), 3..10 (from m=4), 2..8 (from m=5),
            6..22 (from m=6), 12..46 (from m=8)
  11     7  None
		

Crossrefs

Cf. A090252, A355066 (inverse).

Programs

  • PARI
    See Links section.

A355066 Inverse permutation to A355065.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 13, 17, 19, 6, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 8, 9, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 77, 137, 139, 149, 151, 157, 163, 167, 10, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Rémy Sigrist, Jun 17 2022

Keywords

Comments

This sequence has similarities with the Two-Up sequence (A090252) as a(n) is coprime to the next n terms (and to the floor(n/2) previous terms).
Prime numbers appear in their natural order.

Examples

			A355065(77) = 39, so a(39) = 77.
		

Crossrefs

Programs

  • PARI
    See Links section.

A344307 a(n) is the smallest number not yet in the sequence that satisfies the following condition: if p is a prime factor of a(n), the next p terms are coprime to p.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 9, 8, 11, 13, 6, 17, 19, 10, 21, 23, 16, 29, 27, 20, 31, 37, 12, 41, 43, 14, 15, 47, 22, 53, 39, 32, 25, 49, 18, 59, 61, 34, 45, 67, 38, 71, 33, 28, 65, 73, 24, 79, 83, 46, 75, 89, 56, 97, 81, 44, 85, 101, 26, 87, 103, 62, 35, 57, 64, 107
Offset: 1

Views

Author

Sergio Pimentel, May 14 2021

Keywords

Comments

It is not clear if every positive integer is in the sequence.

Crossrefs

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, May 29 2021

A355701 a(n) = Product of prime(k+1) where k runs through the exponents of the positions 2^k of the 1-bits in A354169(n).

Original entry on oeis.org

1, 2, 3, 5, 7, 6, 11, 13, 17, 35, 19, 23, 29, 22, 31, 39, 37, 41, 43, 85, 47, 133, 53, 59, 61, 667, 67, 71, 73, 62, 79, 33, 83, 481, 89, 97, 101, 1763, 103, 107, 109, 235, 113, 119, 127, 1007, 131, 137, 139, 3599, 149, 151, 157, 1541, 163, 2059, 167, 173, 179
Offset: 0

Views

Author

Michael De Vlieger, Jul 14 2022

Keywords

Comments

Compactification of A354169. Offset matches A354169.

Crossrefs

Programs

A355894 Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.

Original entry on oeis.org

0, 1, 10, 100, 1000, 10000, 11, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 1100, 10001, 100000000000, 100010, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2022

Keywords

Comments

The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.
This bears the same relation to A354790 as A355893 does to A090252.

Examples

			The terms, right-justified, for comparison with A355892 and A355893, are:
   1 ...................................0
   2 ...................................1
   3 ..................................10
   4 .................................100
   5 ................................1000
   6 ...............................10000
   7 ..................................11
   8 ..............................100000
   9 .............................1000000
  10 ............................10000000
  11 ...........................100000000
  12 ..........................1000000000
  13 .........................10000000000
  14 ................................1100
  15 ...............................10001
  16 ........................100000000000
  17 ..............................100010
  18 .......................1000000000000
  19 ......................10000000000000
  20 .....................100000000000000
  21 ....................1000000000000000
  22 ...................10000000000000000
  23 ..................100000000000000000
  24 .................1000000000000000000
  ...
		

Crossrefs

Previous Showing 31-38 of 38 results.