cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A115272 Primes p such that p + 2, 18*p^2 + 1, and 18*(p+2)^2 + 1 are all primes.

Original entry on oeis.org

29, 107, 431, 1487, 1607, 2141, 5501, 10139, 10271, 17579, 22481, 23057, 27479, 32369, 36341, 36929, 38447, 55931, 57527, 69827, 75539, 78539, 79691, 81047, 81971, 84179, 86027, 89561, 93761, 102059, 112571, 113147, 118799, 119687
Offset: 1

Views

Author

Zak Seidov, Jan 19 2006

Keywords

Examples

			a(1)=29 because 31, 18*29^2 + 1 = 15139, and 18*31^2 + 1 = 17299 are all primes.
		

Crossrefs

Cf. A089001 (Numbers n such that 2*n^2 + 1 is prime),
A090612 (Numbers k such that the k-th prime is of the form 2*k^2+1),
A090698 (Primes of the form 2*n^2+1),
A113541 (Numbers n such that 18*n^2+1 is a multiple of 19).

Programs

  • Magma
    [p: p in PrimesUpTo(200000)| IsPrime(p+2) and IsPrime(18*p^2+1) and IsPrime(18*(p+2)^2+1)] // Vincenzo Librandi, Nov 13 2010

Extensions

More terms from Vincenzo Librandi, Mar 27 2010

A247965 a(n) is the smallest number k such that m*k^2+1 is prime for all m = 1 to n.

Original entry on oeis.org

1, 1, 6, 3240, 113730, 30473520, 3776600100, 16341921960, 3332396388090
Offset: 1

Views

Author

Michel Lagneau, Sep 28 2014

Keywords

Comments

Conjecture : the sequence is infinite.
a(10) > 15466500000000. a(11) > 107669100000000. - Hiroaki Yamanouchi, Oct 01 2014

Examples

			a(3)=6 because 6^2+1 = 37, 2*6^2+1 = 73 and 3*6^2+1 = 109 are prime numbers.
The resulting primes begin like this:
2;
2, 3;
37, 73, 109;
10497601, 20995201, 31492801, 41990401;
... - _Michel Marcus_, Sep 29 2014
		

Crossrefs

Programs

  • Maple
    for n from 1 to 6 do:
      ii:=0:
       for k from 1 to 10^10 while(ii=0) do:
         ind:=0:
           for m from 1 to n do:
             p:=m*k^2+1:
              if type(p,prime) then
               ind:=ind+1:
               fi:
            od:
           if ind=n then
            ii:=1:printf ( "%d %d \n",n,k):
           fi:
        od:
      od:
  • PARI
    a(n)=k=1;while(k,c=0;for(i=1,n,if(!ispseudoprime(i*k^2+1),c++;break));if(!c,return(k));if(c,k++))
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 28 2014

Extensions

a(7)-a(9) from Hiroaki Yamanouchi, Oct 01 2014
Previous Showing 11-12 of 12 results.