cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A189806 Denominators of coefficients in the series expansion of ((2 - m) EllipticK(m) - 2 EllipticE(m))/(Pi * m).

Original entry on oeis.org

1, 16, 64, 2048, 8192, 262144, 1048576, 67108864, 268435456, 17179869184, 68719476736, 2199023255552, 8796093022208, 281474976710656, 1125899906842624, 144115188075855872, 576460752303423488, 73786976294838206464, 295147905179352825856, 9444732965739290427392, 37778931862957161709568
Offset: 0

Views

Author

Dan T. Abell, Apr 28 2011

Keywords

Comments

This combination of elliptic functions appears in the expression for the vector potential generated by a circular loop of current. The denominators are powers of 2. The base-2 logarithm of the denominators increments in pattern related to A090739. That latter sequence begins 3,4,3,5,3,4,3,6. Add 2 to each entry; thus, 5,6,5,7,5,6,5,8. Duplicate each entry; thus, 5,5,6,6,5,5,7,7,5,5,6,6,5,5,8,8. Now insert a 2 at the beginning and between each entry; thus, 2,5,2,5,2,6,2,6,2,5,2,5,2, 7,2,7,2,5,2,5,2,6,2,6,2,5,2,5,2,8,2,8. Finally, prepend a 4; thus 4,2,5,2,5,2,6,2,6,2,5,2,5,2,7,2,7,2,5,2,5,2,6,2,6,2,5,2,5,2,8,2,8. This yields the pattern of increments in the base-2 logarithm of the denominators. See also the construction of the ruler sequence A007814.

References

  • J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, third edition, 1999, eq.(5.37).

Crossrefs

Programs

  • Mathematica
    Denominator[CoefficientList[Series[((2-m)EllipticK[m]-2EllipticE[m])/m,{m,0,20}]/Pi,m]]

Formula

a(n) is the denominator of the fraction ((2n-1)!!)^2/(2^(2n+1)*(n-1)!*(n+1)!).

A091284 Exponent of 2 in -1+prime[n]^s, if s is an exponent of form 16k-8. Except a(1)=0, a(n)=1+A091283(n).

Original entry on oeis.org

0, 5, 5, 6, 5, 5, 7, 5, 6, 5, 8, 5, 6, 5, 7, 5, 5, 5, 5, 6, 6, 7, 5, 6, 8, 5, 6, 5, 5, 7, 10, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 9, 9, 5, 6, 5, 8, 5, 5
Offset: 1

Views

Author

Labos Elemer, Jan 22 2004

Keywords

Comments

Exponents of 2 in -1+p^s if the exponent s[u]=(2^u)k-(2^(u-1) comes from other sequence generated with s[u-1] exponent by adding 1 to terms of the "previous" sequence. E.g. s=256k-128 needed an addition of 6 to the terms of A091282.

Crossrefs

Programs

  • Mathematica
    Table[{8*k-4, Table[Part[Flatten[FactorInteger [ -1+Prime[n]^(16*k-8)]], 2], {n, 2, 50}]}, {k, 1, 2}]

A349693 Dirichlet convolution of the ruler function (A001511) with itself.

Original entry on oeis.org

1, 4, 2, 10, 2, 8, 2, 20, 3, 8, 2, 20, 2, 8, 4, 35, 2, 12, 2, 20, 4, 8, 2, 40, 3, 8, 4, 20, 2, 16, 2, 56, 4, 8, 4, 30, 2, 8, 4, 40, 2, 16, 2, 20, 6, 8, 2, 70, 3, 12, 4, 20, 2, 16, 4, 40, 4, 8, 2, 40, 2, 8, 6, 84, 4, 16, 2, 20, 4, 16, 2, 60, 2, 8, 6, 20, 4, 16, 2, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Comments

Dirichlet convolution of A000005 with A104117. - Ridouane Oudra, Jul 23 2025

Crossrefs

Programs

  • Maple
    a:= n-> (f-> add(f(d)*f(n/d), d=numtheory[divisors](n)))(k-> padic[ordp](2*k, 2)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Nov 25 2021
  • Mathematica
    Table[Sum[IntegerExponent[2 d, 2] IntegerExponent[2 n/d, 2], {d, Divisors[n]}], {n, 1, 80}]
    f[p_, e_] := If[p == 2, Binomial[e + 3, 3], e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 80] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A001511(n) = (1+valuation(n,2));
    A349693(n) = sumdiv(n,d,A001511(n/d)*A001511(d)); \\ Antti Karttunen, Nov 25 2021
    
  • Python
    from sympy import divisor_count
    def A349693(n): return divisor_count(n)*(m:=(n&-n).bit_length()+1)*(m+1)//6 # Chai Wah Wu, Jul 13 2022

Formula

Dirichlet g.f.: zeta(s)^2 * 4^s / (2^s-1)^2.
a(n) = Sum_{d|n} A001511(d) * A001511(n/d).
a(n) = Sum_{d|n} A000217(A001511(d)).
Multiplicative with a(p^e) = binomial(e+3,3) if p = 2 and e+1 otherwise. - Amiram Eldar, Nov 25 2021
Sum_{k=1..n} a(k) ~ 4*n*(log(n) - 1 + 2*gamma - 2*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 26 2021
From Ridouane Oudra, Jul 23 2025: (Start)
a(n) = Sum_{i=0..A007814(n)} (i+1)*tau(n/2^i).
a(n) = Sum_{d|n} A115364(d).
a(n) = (1/6)*A090739(n)*A085058(n-1)*A000005(n).
a(n) = (1/6)*A001511(n)*A090739(n)*A099777(n).
a(n) = (1/3)*A115364(n)*A372784(n).
a(n) = A001227(n)*A000292(A001511(n)).
a(2*n+1) = tau(2*n+1).
a(2^k*(2*n+1)) = binomial(k+3, 3)*tau(2*n+1), for k, n >= 0. (End)

A363228 Exponent of 4 in 9^n - 1.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 1

Views

Author

Ruud H.G. van Tol, May 21 2023

Keywords

Comments

Not the same as A147648-without-zeros.

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[2*n, 4] + 1; Array[a, 100] (* Amiram Eldar, May 22 2023 *)
  • PARI
    a(n) = valuation(2*n, 4) + 1;
    
  • Python
    def A363228(n): return (~n&n-1).bit_length()+3>>1 # Chai Wah Wu, Jul 09 2023

Formula

a(n) = floor(A090739(n)/2).
a(n) = A244415(n) + 1.
a(n) = A235127(A024101(n)). - Michel Marcus, May 21 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/3. - Amiram Eldar, Jul 13 2023
Conjecture: a(n) = A235127(A000045(6*n)), all other 4-adic 6-sections A235127(A000045(.))=0. - R. J. Mathar, Jun 28 2025
Previous Showing 11-14 of 14 results.