cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A265251 Number of partitions of n such that there is exactly one part which occurs three times, while all other parts occur only once.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 2, 2, 4, 6, 6, 9, 10, 14, 19, 22, 26, 35, 40, 50, 63, 74, 88, 107, 127, 150, 181, 213, 249, 296, 345, 401, 473, 546, 636, 741, 853, 983, 1138, 1306, 1498, 1722, 1967, 2247, 2574, 2925, 3327, 3788, 4294, 4866, 5516, 6233, 7036, 7947, 8953
Offset: 0

Views

Author

Emeric Deutsch, Dec 28 2015

Keywords

Comments

Conjecture: a(n) is also the difference between the number of parts in the distinct partitions of n and the number of distinct parts in the odd partitions of n (offset 0). For example, if n = 5, there are 5 parts in the distinct partitions of 5 (5, 41, 32) and 4 distinct parts in the odd partitions of 5 (namely, 5,3,1,1 in 5,311,11111) with difference 1. - George Beck, Apr 22 2017
George E. Andrews has kindly informed me that he has proved this conjecture and the result will be included in his article "Euler's Partition Identity and Two Problems of George Beck" which will appear in The Mathematics Student, 86, Nos. 1-2, January - June (2017). - George Beck, Apr 23 2017

Examples

			a(9) = 4 because we have [2,2,2,3], [3,3,3], [1,1,1,2,4], and [1,1,1,6].
		

Crossrefs

Column k=3 of A266477.

Programs

  • Maple
    g := add(x^(3*k)/(1+x^k), k = 1 .. 100)*mul(1+x^i, i = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, m), m = 0 .. 75);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+5-4*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 3*i>n, 0, b(n-3*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 5 - 4*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t] + If[t == 1 || 3*i > n, 0, b[n - 3*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 11 2016, after Alois P. Heinz *)
    Take[ CoefficientList[ Expand[ Sum[x^(3k)/(1 + x^k), {k, 60}] Product[1 + x^i, {i, 60}]], x], 60] (* slower than above *) (* Robert G. Wilson v, Apr 24 2017 *)
  • PARI
    x='x + O('x^54); concat([0, 0, 0],Vec(sum(k=1, 54, x^(3*k)/(1 + x^k)* prod(i=1, 54, 1 + x^i)))) \\ Indranil Ghosh, Apr 24 2017

Formula

G.f.: Sum_{k>=1} x^{3k}/(1+x^k)*Product_{i>=1} (1+x^i).
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (2*log(2) - 1) / (4*Pi) = 0.040456547528... - Vaclav Kotesovec, May 24 2018

A325284 Numbers whose prime indices form an initial interval with a single hole: (1, 2, ..., x, x + 2, ..., m - 1, m), where x can be 0 but must be less than m - 1.

Original entry on oeis.org

3, 9, 10, 15, 20, 27, 40, 42, 45, 50, 70, 75, 80, 81, 84, 100, 105, 126, 135, 140, 160, 168, 200, 225, 243, 250, 252, 280, 294, 315, 320, 330, 336, 350, 375, 378, 400, 405, 462, 490, 500, 504, 525, 560, 588, 640, 660, 672, 675, 700, 729, 735, 756, 770, 800
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose distinct parts form an initial interval with a single hole. The enumeration of these partitions by sum is given by A090858.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    9: {2,2}
   10: {1,3}
   15: {2,3}
   20: {1,1,3}
   27: {2,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   70: {1,3,4}
   75: {2,3,3}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
  135: {2,2,2,3}
  140: {1,1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Length[Complement[Range[PrimePi[FactorInteger[#][[-1,1]]]],PrimePi/@First/@FactorInteger[#]]]==1&]

A325269 Number of integer partitions of n with 2 distinct parts or at least 3 parts.

Original entry on oeis.org

0, 0, 0, 2, 3, 6, 9, 14, 20, 29, 40, 55, 75, 100, 133, 175, 229, 296, 383, 489, 625, 791, 1000, 1254, 1573, 1957, 2434, 3009, 3716, 4564, 5602, 6841, 8347, 10142, 12308, 14882, 17975, 21636, 26013, 31184, 37336, 44582, 53172, 63260, 75173, 89133, 105556
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A080257.
Partitions with 2 distinct parts are in A002133(n). Partitions with at least 3 parts are in A004250(n). Some partitions are in both subsets, so A002133(n)+A004250(n) >= a(n). - R. J. Mathar, Dec 13 2022

Examples

			The a(1) = 1 through a(8) = 20 partitions:
  (21)   (31)    (32)     (42)      (43)       (53)
  (111)  (211)   (41)     (51)      (52)       (62)
         (1111)  (221)    (222)     (61)       (71)
                 (311)    (321)     (322)      (332)
                 (2111)   (411)     (331)      (422)
                 (11111)  (2211)    (421)      (431)
                          (3111)    (511)      (521)
                          (21111)   (2221)     (611)
                          (111111)  (3211)     (2222)
                                    (4111)     (3221)
                                    (22111)    (3311)
                                    (31111)    (4211)
                                    (211111)   (5111)
                                    (1111111)  (22211)
                                               (32111)
                                               (41111)
                                               (221111)
                                               (311111)
                                               (2111111)
                                               (11111111)
		

Crossrefs

Programs

  • Maple
    A325269 := proc(n)
        local a,p,s ;
        a := 0 ;
        for p in combinat[partition](n) do
            s := convert(p,set) ;
            if nops(p) >= 3 or nops(s) = 2 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A325269(n),n=0..40) ; # R. J. Mathar, Dec 13 2022
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[#]]==2||Length[#]>2&]],{n,0,30}]

Formula

conjecture: a(n) = A000041(n) - A000034(n-1), n>0. - R. J. Mathar, Dec 13 2022
Previous Showing 21-23 of 23 results.