cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A163978 a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 4.

Original entry on oeis.org

3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 07 2009

Keywords

Comments

Interleaving of A007283 and A000079 without initial terms 1 and 2.
Equals A029744 without first two terms. Agrees with A145751 for all terms listed there (up to 65536).
Binomial transform is A078057 without initial 1, second binomial transform is A048580, third binomial transform is A163606, fourth binomial transform is A163604, fifth binomial transform is A163605.
a(n) is the number of vertices of the (n-1)-iterated line digraph L^{n-1}(G) of the digraph G(=L^0(G)) with vertices u,v,w and arcs u->v, v->u, v->w, w->v. - Miquel A. Fiol, Jun 08 2024

Crossrefs

Programs

  • Magma
    [ n le 2 select n+2 else 2*Self(n-2): n in [1..41] ];
    
  • Mathematica
    LinearRecurrence[{0,2}, {3,4}, 52] (* or *) Table[(1/2)*(5-(-1)^n )*2^((2*n-1+(-1)^n)/4), {n,50}] (* G. C. Greubel, Aug 24 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(x*(3+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 24 2017
    
  • SageMath
    [(2+(n%2))*2^((n-(n%2))//2) for n in range(1,41)] # G. C. Greubel, Jun 13 2024

Formula

a(n) = A027383(n-1) + 2.
a(n) = A052955(n) + 1 for n >= 1.
a(n) = (1/2)*(5 - (-1)^n)*2^((2*n - 1 + (-1)^n)/4).
G.f.: x*(3+4*x)/(1-2*x^2).
a(n) = A090989(n-1).
E.g.f.: (1/2)*(4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x) - 4). - G. C. Greubel, Aug 24 2017
a(n) = A063759(n), n >= 1. - R. J. Mathar, Jan 25 2023

A116183 Array T(k,n) = number of meaningful differential operations of the n-th order on the space R^(3+k), for k=>0, n>0, read by antidiagonals.

Original entry on oeis.org

3, 4, 5, 5, 6, 8, 6, 9, 8, 13, 7, 10, 16, 12, 21, 8, 13, 16, 29, 16, 34, 9, 14, 24, 26, 52, 24, 55, 10, 17, 24, 45, 42, 94, 32, 89, 11, 18, 32, 42, 84, 68, 169
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2007

Keywords

Comments

Two more rows can be obtained from A129638 and A129639.

Examples

			Table begins:
k=0.|.3..5..8.13..21..34..55..89..144..233..377..610..987.1597...
k=1.|.4..6..8.12..16..24..32..48...64...96..128..192..256..384...
k=2.|.5..9.16.29..52..94.169.305..549..990.1783.3214.5790...
k=3.|.6.10.16.26..42..68.110.178..288..466..754.1220.1974...
k=4.|.7.13.24.45..84.158.296.557.1045.1966.3691.6942.13038...
k=5.|.8.14.24.42..72.126.216.378..648.1134.1944.3402..5832...
k=6.|.9.17.32.61.116.222.424.813.1556.2986.5721.10982...
k=7.|10.18.32.58.104.188.338.610.1098.1980.3566.6428...
		

Crossrefs

k=0 row is A020701. k=1 row is A090989. k=2 row is A090990. k=3 row is A090991. k=4 row is A090992. k=5 row is A090993. k=6 row is A090994. k=7 row is A090995.
Diagonal: A127935.

A127935 Number of meaningful differential operations of the n-th order on the space R^(2+n).

Original entry on oeis.org

3, 6, 16, 26, 84, 126, 424, 610, 2068, 2936, 9816, 13884, 45608, 64750, 208336, 297570, 938676, 1351492, 4181752, 6071028, 18454648, 27023598, 80796336, 119300636, 351331464, 522981328, 1518742384, 2278188504, 6531607248, 9869753934, 27963677600, 42547990626
Offset: 1

Views

Author

Jonathan Vos Post, Apr 09 2007, Jun 08 2007

Keywords

Examples

			a(1) = 3 = A020701(1) is number of meaningful differential operations of the first order on the space R^3, namely {div, grad, curl}.
a(2) = 6 = A090989(2) is number of meaningful differential operations of the 2nd order on the space R^4 (some of them are identically zero though).
a(3) = 16 = A090990(3) is number of meaningful differential operations of the 3rd order on the space R^5.
		

References

  • R. Bott, L. W. Tu, Differential forms in algebraic topology, New York: Springer, 1982.

Crossrefs

Main diagonal of A116183.

Programs

  • Mathematica
    r[n_] := Table[Boole[j == i + 1 || i + j == n + 1], {i, n}, {j, n}];
    Table[Total@Total@If[n == 1, IdentityMatrix[3], MatrixPower[r[n+2], n-1]], {n, 10}]
    (* Andrey Zabolotskiy, Apr 30 2021 *)

Extensions

Corrected from 8th term onwards. It appears the 8th and 9th terms listed were incorrectly taken from A000045 with two numbers concatenated together, whereas the 8th, 9th and 10th terms should have been the 8th term of A090995, the 9th of A129638 and the 10th of A129639. Joseph Myers, Dec 23 2008
Name and examples corrected, terms a(11) and beyond added by Andrey Zabolotskiy, Apr 30 2021
Previous Showing 11-13 of 13 results.