A319074
a(n) is the sum of the first n nonnegative powers of the n-th prime.
Original entry on oeis.org
1, 4, 31, 400, 16105, 402234, 25646167, 943531280, 81870575521, 15025258332150, 846949229880161, 182859777940000980, 23127577557875340733, 1759175174860440565844, 262246703278703657363377, 74543635579202247026882160, 21930887362370823132822661921, 2279217547342466764922495586798
Offset: 1
For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
Cf.
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
A319076
Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0
The corner of the square array is as follows:
A126646 A003462 A003463 A023000 A016123 A091030 A091045
A000012 1, 1, 1, 1, 1, 1, 1, ...
A008864 3, 4, 6, 8, 12, 14, 18, ...
A060800 7, 13, 31, 57, 133, 183, 307, ...
A131991 15, 40, 156, 400, 1464, 2380, 5220, ...
A131992 31, 121, 781, 2801, 16105, 30941, 88741, ...
A131993 63, 364, 3906, 19608, 177156, 402234, 1508598, ...
....... 127, 1093, 19531, 137257, 1948717, 5229043, 25646167, ...
....... 255, 3280, 97656, 960800, 21435888, 67977560, 435984840, ...
....... 511, 9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
Columns 1-15:
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A272199
Expansion of 1/(1 - 2*x + 13*x^2).
Original entry on oeis.org
1, 2, -9, -44, 29, 630, 883, -6424, -24327, 34858, 385967, 318780, -4380011, -12904162, 31131819, 230017744, 55321841, -2879586990, -6478357913, 24477915044, 133174482957, -51863929658, -1834996137757, -2995761189960, 17863427410921, 74671750291322
Offset: 0
a(2) = c(13^2) = A000727(2*A091030(2)) =
A000727(28) = -9.
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.
-
I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)-13*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 25 2016
-
CoefficientList[Series[1/(1 - 2 x + 13 x^2), {x, 0, 25}], x] (* Michael De Vlieger, Apr 27 2016 *)
LinearRecurrence[{2, -13}, {1, 2}, 30] (* Vincenzo Librandi, Nov 25 2016 *)
-
Vec(1/(1-2*x+13*x^2) + O(x^99)) \\ Altug Alkan, Apr 28 2016
Comments