cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A099884 XOR difference triangle of the powers of 2, read by rows; Square array A(row,col): A(0,col) = 2^col, A(row,col) = A048724(A(row-1, col)) for row > 0, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 15, 16, 24, 20, 30, 17, 32, 48, 40, 60, 34, 51, 64, 96, 80, 120, 68, 102, 85, 128, 192, 160, 240, 136, 204, 170, 255, 256, 384, 320, 480, 272, 408, 340, 510, 257, 512, 768, 640, 960, 544, 816, 680, 1020, 514, 771, 1024, 1536, 1280, 1920
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

Define an "XOR difference triangle" for a sequence A by the following process. Start with A in the leftmost column. Generate the next column by performing the XOR operation between adjacent terms of the prior column. Repeat this process to generate the XOR difference triangle for A. Further, we define the "XOR BINOMIAL transform" of A as the main diagonal in the XOR difference triangle for A. The XOR BINOMIAL transform is its self-inverse. Let a sequence B be the XOR BINOMIAL transform of A, then we may express B by: B(n) = SumXOR_{k=0..n} A047999(n,k)*A(k), which is equivalent to: B(n) = (C(n,0)mod 2)*A(0) XOR (C(n,1)mod 2)*A(1) XOR (C(n,2)mod 2)*A(2) XOR ... XOR (X(n,n)mod 2)*A(n), where the coefficients are C(n,k)(mod 2) = A047999(n,k).
This sequence is a rearrangement of the numbers which are 2^k times distinct Fermat numbers (numbers of the form 2^(2^m) + 1). This matches the sizes of polygons constructible with compass and straightedge (A003401) up to 2^32+1, which is the first nonprime Fermat number. - Franklin T. Adams-Watters, Jun 16 2006

Examples

			The main diagonal equals A001317 (Pascal's triangle mod 2 in decimal):
{1,3,5,15,17,51,85,255,257,771,1285,3855,...}, and defines the XOR BINOMIAL transform of the powers of 2.
Rows begin:
  1;
  2, 3;
  4, 6, 5;
  8, 12, 10, 15;
  16, 24, 20, 30, 17;
  32, 48, 40, 60, 34, 51;
  64, 96, 80, 120, 68, 102, 85;
  128, 192, 160, 240, 136, 204, 170, 255;
  256, 384, 320, 480, 272, 408, 340, 510, 257;
  512, 768, 640, 960, 544, 816, 680, 1020, 514, 771;
  1024, 1536, 1280, 1920, 1088, 1632, 1360, 2040, 1028, 1542, 1285;
  2048, 3072, 2560, 3840, 2176, 3264, 2720, 4080, 2056, 3084, 2570, 3855;
  ...
From _Antti Karttunen_, Sep 19 2016: (Start)
Viewed as a square array, the top left corner looks like this:
     1,    2,     4,     8,    16,     32,     64,    128
     3,    6,    12,    24,    48,     96,    192,    384
     5,   10,    20,    40,    80,    160,    320,    640
    15,   30,    60,   120,   240,    480,    960,   1920
    17,   34,    68,   136,   272,    544,   1088,   2176
    51,  102,   204,   408,   816,   1632,   3264,   6528
    85,  170,   340,   680,  1360,   2720,   5440,  10880
   255,  510,  1020,  2040,  4080,   8160,  16320,  32640
   257,  514,  1028,  2056,  4112,   8224,  16448,  32896
   771, 1542,  3084,  6168, 12336,  24672,  49344,  98688
  1285, 2570,  5140, 10280, 20560,  41120,  82240, 164480
  3855, 7710, 15420, 30840, 61680, 123360, 246720, 493440
  4369, 8738, 17476, 34952, 69904, 139808, 279616, 559232
  ...
(End)
The square array shown above can be viewed as a subtable of a multiplication table with particular relevance to the carryless multiplication defined by A048720, as the first column gives the A048720 powers of 3 (and the first row gives powers of 2, which are the same as in standard arithmetic). - _Peter Munn_, Jan 13 2020
		

Crossrefs

Essentially GF(2)[X] analog of table A036561. - Antti Karttunen, Jan 18 2020
Cf. A047999, A158875 (row sums).
Cf. A000079 (first column of triangular table, the topmost row of square array).
Cf. A001317 (the rightmost diagonal of triangular table, the leftmost column of square array).
Cf. A099885, A117998 (central diagonals).
Cf. A276618 (transpose), A091202, A193231.

Programs

  • Mathematica
    a[n_]:= Sum[Mod[Binomial[n, i], 2]*2^i, {i, 0, n}]; T[n_, k_]:=2^(n - k)a[k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    {T(n,k)=local(B);B=0;for(i=0,k,B=bitxor(B,binomial(k,i)%2*2^(n-i)));B}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Python
    from sympy import binomial
    def a(n):
        return sum((binomial(n, i)%2)*2**i for i in range(n + 1))
    def T(n, k): return 2**(n - k)*a(k)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A099884 n) (A099884bi (A002262 n) (A025581 n)))
    ;; Then use either this recurrence:
    (define (A099884bi row col) (if (zero? row) (A000079 col) (A048724 (A099884bi (- row 1) col))))
    ;; or this one:
    (define (A099884bi row col) (if (zero? col) (A001317 row) (* 2 (A099884bi row (- col 1)))))
    ;; Antti Karttunen, Sep 19 2016
    

Formula

T(n, k) = 2^(n-k)*A001317(k). T(n, n) = A001317(n) = SumXOR_{k=0..n} A047999(n, k)*2^k, where SumXOR is the analog of summation under the binary XOR operation.
From Antti Karttunen, Sep 19 2016: (Start)
When viewed as a square array A(row,col), with row >= 0, col >= 0, the following recurrences and formulas are valid:
A(0,col) = A000079(col), for row > 0, A(row,col) = A048724(A(row-1, col)).
A(row,0) = A001317(row), for col > 0, A(row,col) = 2*A(row,col-1).
A(row,col) = A248663(A066117(row+1,col+1)) = A048675(A255483(row,col+1)).
(End)
With the definitions from Antti Karttunen above, A(row+1, col) = A048720(3, A(row, col)). - Peter Munn, Jan 13 2020
A(n,k) = A193231(A(k,n)) = A091202(A036561(n,k)). - Antti Karttunen, Jan 18 2020

Extensions

Square array interpretation added as a second, alternative description by Antti Karttunen, Sep 19 2016

A234741 a(n) is the base-2 carryless product of the prime factors of n; Encoding of the product of the polynomials over GF(2) represented by the prime factors of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 13, 14, 15, 16, 17, 10, 19, 20, 9, 22, 23, 24, 17, 26, 15, 28, 29, 30, 31, 32, 29, 34, 27, 20, 37, 38, 23, 40, 41, 18, 43, 44, 17, 46, 47, 48, 21, 34, 51, 52, 53, 30, 39, 56, 53, 58, 59, 60, 61, 62, 27, 64, 57, 58, 67
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2014

Keywords

Comments

"Encoding" means the number whose binary representation is given by the coefficients of the polynomial, e.g., 13=1101[2] encodes X^3+X^2+1. The product is the usual multiplication of polynomials in GF(2)[X] (or binary multiplication without carry-bits, cf. A048720).
a(n) <= n. [As all terms of the table A061858 are nonnegative]

Examples

			a(9) = a(3*3) = 5, as when we multiply 3 ('11' in binary) with itself, and discard the carry-bits, using XOR (A003987) instead of normal addition, we get:
   11
  110
-----
  101
that is, 5, as '101' is its binary representation. In other words, a(9) = a(3*3) = A048720(3,3) = 5.
Alternatively, 9 = 3*3, and 3=11[2] encodes the polynomial X+1, and (X+1)*(X+1) = X^2+1 in GF(2)[X], which is encoded as 101[2] = 5, therefore a(9) = 5. - _M. F. Hasler_, Feb 16 2014
		

Crossrefs

A235034 gives the k for which a(k)=k.
A236833(n) gives the number of times n occurs in this sequence.
A236841 gives the same sequence sorted and duplicates removed, A236834 gives the numbers that do not occur here, A236835 gives numbers that occur more than once.
A325562(n) gives the number of iterations needed before one of the fixed points (terms of A235034) is reached.

Programs

  • PARI
    A234741(n)={n=factor(n);n[,1]=apply(t->Pol(binary(t)),n[,1]);sum(i=1,#n=Vec(factorback(n))%2,n[i]<<(#n-i))} \\ M. F. Hasler, Feb 18 2014

Formula

a(0)=0, a(1)=1, and for n > 1, a(n) = A048720(A020639(n),a(n/A020639(n))). [A048720 used as a bivariate function]
Equally, for n with its unique prime factorization n = p_1 * ... * p_k, with the p_i not necessarily distinct primes, a(n) = p_1 x ... x p_k, where x stands for carryless multiplication defined in A048720, which is isomorphic to multiplication in GF(2)[X].
a(2n) = 2*a(n).
More generally, if A061858(x,y) = 0, then a(x*y) = a(x)*a(y).
a(A235034(n)) = A235034(n).
A236378(n) = n - a(n).

Extensions

Term a(0) = 0 removed and a new primary definition added by Antti Karttunen, May 10 2019

A091203 Factorization-preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 32, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 48, 35, 34, 243, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000040(n) = a(A014580(n)), A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)), A091227(n) = A049084(a(n)), A091247(n) = A066247(a(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091203(n) = if(n<=1,n,if(!(n%2),2*A091203(n/2),A003961(A091203(A305422(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1. For n's coding an irreducible polynomial ir_i, that is if n=A014580(i), we have a(n) = A000040(i) and for composite polynomials a(ir_i X ir_j X ...) = p_i * p_j * ..., where p_i = A000040(i) and X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers. The permutations A091205, A106443, A106445, A106447, A235042 and A245704 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A003961(a(A305422(n))).
a(n) = A005940(1+A305418(n)) = A163511(A305428(n)).
A046523(a(n)) = A278233(n).
(End)

A245703 Permutation of natural numbers: a(1) = 1, a(p_n) = A014580(a(n)), a(c_n) = A091242(a(n)), where p_n = n-th prime, c_n = n-th composite number and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomials over GF(2), respectively.

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 11, 6, 8, 12, 25, 9, 13, 17, 10, 14, 47, 18, 19, 34, 15, 20, 31, 24, 16, 21, 62, 26, 55, 27, 137, 45, 22, 28, 42, 33, 37, 23, 29, 79, 59, 35, 87, 71, 36, 166, 41, 58, 30, 38, 54, 44, 61, 49, 32, 39, 99, 76, 319, 46, 91, 108, 89, 48, 200, 53, 97, 75, 40, 50, 203, 70, 67, 57, 78, 64, 43, 51
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

All the permutations A091202, A091204, A106442, A106444, A106446, A235041 share the same property that primes (A000040) are mapped bijectively to the binary representations of irreducible GF(2) polynomials (A014580) but while they determine the mapping of composites (A002808) to the corresponding binary codes of reducible polynomials (A091242) by a simple multiplicative rule, this permutation employs index-recursion also in that case.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    a014580 = vector(2^18);
    a091242 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)
    A245703(n) = if(1==n, 1, if(isprime(n), a014580[A245703(primepi(n))], a091242[A245703(n-primepi(n)-1)]));
    for(n=1, 10001, write("b245703.txt", n, " ", A245703(n)));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A245703 n) (cond ((= 1 n) n) ((= 1 (A010051 n)) (A014580 (A245703 (A000720 n)))) (else (A091242 (A245703 (A065855 n))))))

Formula

a(1) = 1, a(p_n) = A014580(a(n)) and a(c_n) = A091242(a(n)), where p_n is the n-th prime, A000040(n) and c_n is the n-th composite, A002808(n).
a(1) = 1, after which, if A010051(n) is 1 [i.e. n is prime], then a(n) = A014580(a(A000720(n))), otherwise a(n) = A091242(a(A065855(n))).
As a composition of related permutations:
a(n) = A245702(A135141(n)).
a(n) = A091204(A245821(n)).
Other identities. For all n >= 1, the following holds:
a(A007097(n)) = A091230(n). [Maps iterates of primes to the iterates of A014580. Permutation A091204 has the same property]
A091225(a(n)) = A010051(n). [Maps primes to binary representations of irreducible GF(2) polynomials, A014580, and nonprimes to union of {1} and the binary representations of corresponding reducible polynomials, A091242. The permutations A091202, A091204, A106442, A106444, A106446 and A235041 have the same property.]

A091204 Factorization and index-recursion preserving isomorphism from nonnegative integers to polynomials over GF(2).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 11, 8, 5, 14, 25, 12, 19, 22, 9, 16, 47, 10, 31, 28, 29, 50, 13, 24, 21, 38, 15, 44, 61, 18, 137, 32, 43, 94, 49, 20, 55, 62, 53, 56, 97, 58, 115, 100, 27, 26, 37, 48, 69, 42, 113, 76, 73, 30, 79, 88, 33, 122, 319, 36, 41, 274, 39, 64, 121, 86, 185
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004. Name changed Aug 16 2014

Keywords

Comments

This "deeply multiplicative" isomorphism is one of the deep variants of A091202 which satisfies most of the same identities as the latter, but it additionally preserves also the structures where we recurse on prime's index. E.g. we have: A091230(n) = a(A007097(n)) and A061775(n) = A091238(a(n)). This is because the permutation induces itself when it is restricted to the primes: a(n) = A091227(a(A000040(n))).
On the other hand, when this permutation is restricted to the nonprime numbers (A018252), permutation A245814 is induced.

Crossrefs

Programs

  • PARI
    v014580 = vector(2^18); A014580(n) = v014580[n];
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i=0; n=2; while((n < 2^22), if(isA014580(n), i++; v014580[i] = n); n++)
    A091204(n) = if(n<=1, n, if(isprime(n), A014580(A091204(primepi(n))), {my(pfs, t, bits, i); pfs=factor(n); pfs[,1]=apply(t->Pol(binary(A091204(t))), pfs[,1]); sum(i=1, #bits=Vec(factorback(pfs))%2, bits[i]<<(#bits-i))}));
    for(n=0, 8192, write("b091204.txt", n, " ", A091204(n)));
    \\ Antti Karttunen, Aug 16 2014

Formula

a(0)=0, a(1)=1, a(p_i) = A014580(a(i)) for primes with index i and for composites a(p_i * p_j * ...) = a(p_i) X a(p_j) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720).
As a composition of related permutations:
a(n) = A245703(A245822(n)).
Other identities.
For all n >= 0, the following holds:
a(A007097(n)) = A091230(n). [Maps iterates of primes to the iterates of A014580. Permutation A245703 has the same property]
For all n >= 1, the following holds:
A091225(a(n)) = A010051(n). [Maps primes bijectively to binary representations of irreducible GF(2) polynomials, A014580, and nonprimes to union of {1} and the binary representations of corresponding reducible polynomials, A091242, in some order. The permutations A091202, A106442, A106444, A106446, A235041 and A245703 have the same property.]

A235041 Factorization-preserving bijection from nonnegative integers to GF(2)[X]-polynomials, version which fixes the elements that are irreducible in both semirings.

Original entry on oeis.org

0, 1, 2, 3, 4, 25, 6, 7, 8, 5, 50, 11, 12, 13, 14, 43, 16, 55, 10, 19, 100, 9, 22, 87, 24, 321, 26, 15, 28, 91, 86, 31, 32, 29, 110, 79, 20, 37, 38, 23, 200, 41, 18, 115, 44, 125, 174, 47, 48, 21, 642, 89, 52, 117, 30, 227, 56, 53, 182, 59, 172, 61, 62, 27, 64
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

Like A091202 this is a factorization-preserving isomorphism from integers to GF(2)[X]-polynomials. The latter are encoded in the binary representation of n like this: n=11, '1011' in binary, stands for polynomial x^3+x+1, n=25, '11001' in binary, stands for polynomial x^4+x^3+1. However, this version does not map the primes (A000040) straight to the irreducible GF(2)[X] polynomials (A014580), but instead fixes the intersection of those two sets (A091206), and maps the elements in their set-wise difference A000040 \ A014580 (= A091209) in numerical order to the set-wise difference A014580 \ A000040 (= A091214).
The composite values are defined by the multiplicativity. E.g., we have a(3n) = A048724(a(n)) and a(3^n) = A001317(n) for all n.
This map satisfies many of the same identities as A091202, e.g., we have A000005(n) = A091220(a(n)), A001221(n) = A091221(a(n)), A001222(n) = A091222(a(n)) and A008683(n) = A091219(a(n)) for all n >= 1.

Examples

			Here (t X u) = A048720(t,u):
a(2)=2, a(3)=3 and a(7)=7, as 2, 3 and 7 are all in A091206.
a(4) = a(2*2) = a(2) X a(2) = 2 X 2 = 4.
a(9) = a(3*3) = a(3) X a(3) = 3 X 3 = 5.
a(5) = 25, as 5 is the first term of A091209 and 25 is the first term of A091214.
a(10) = a(2*5) = a(2) X a(5) = 2 X 25 = 50.
Similarly, a(17) = 55, as 17 is the second term of A091209 and 55 is the second term of A091214.
a(21) = a(3*7) = a(3) X a(7) = 3 X 7 = 9.
		

Crossrefs

Inverse: A235042. Fixed points: A235045.
Similar cross-multiplicative permutations: A091202, A091204, A106442, A106444, A106446.

Formula

a(0)=0, a(1)=1, a(p) = p for those primes p whose binary representations encode also irreducible GF(2)[X]-polynomials (i.e., p is in A091206), and for the rest of the primes q (those whose binary representation encode composite GF(2)[X]-polynomials, i.e., q is in A091209), a(q) = A091214(A235043(q)), and for composite natural numbers, a(p * q * r * ...) = a(p) X a(q) X a(r) X ..., where p, q, r, ... are primes and X stands for the carryless multiplication (A048720) of GF(2)[X] polynomials encoded as explained in the Comments section.

A106442 Exponent-recursed cross-domain bijection from N to GF(2)[X]. Position of A075166(n) in A106456.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 11, 8, 5, 14, 13, 12, 19, 22, 9, 16, 25, 10, 31, 28, 29, 26, 37, 24, 21, 38, 15, 44, 41, 18, 47, 128, 23, 50, 49, 20, 55, 62, 53, 56, 59, 58, 61, 52, 27, 74, 67, 192, 69, 42, 43, 76, 73, 30, 35, 88, 33, 82, 87, 36, 91, 94, 39, 64, 121, 46, 97, 100, 111, 98
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

This map from the multiplicative domain of N to that of GF(2)[X] preserves Catalan-family structures, e.g. A106454(n) = a(A075164(n)), A075163(n) = A106453(a(n)), A075165(n) = A106455(a(n)), A075166(n) = A106456(a(n)), A075167(n) = A106457(a(n)). Shares with A091202 and A106444 the property that maps A000040(n) to A014580(n). Differs from the former for the first time at n=32, where A091202(32)=32, while a(32)=128. Differs from the latter for the first time at n=48, where A106444(48)=48, while a(48)=192.

Examples

			a(5) = 7, as 5 is the 3rd prime and the third irreducible GF(2)[X] polynomial x^2+x+1 is encoded as A014580(3) = 7. a(32) = a(2^5) = A048723(A014580(1),a(5)) = A048723(2,7) = 128. a(48) = a(3 * 2^4) = 3 X A048723(2,a(4+1)-1) = 3 X A048723(2,7-1) = 3 X 64 = 192.
		

Crossrefs

Inverse: A106443. a(n) = A106454(A075163(n)).

Formula

a(0)=0, a(1)=1, a(p_i) = A014580(i) for primes p_i with index i and for composites n = p_i^e_i * p_j^e_j * p_k^e_k * ..., a(n) = A048723(a(p_i), a(e_i)) X A048723(a(p_j), a(1+e_j)-1) X A048723(a(p_k), a(1+e_k)-1) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power. Here p_i is the most significant prime in the factorization of n; its exponent e_i is not incremented before the recursion step, while the exponents of less significant primes e_j, e_k, ... are incremented by one before recursing and the result of the recursion is decremented by one before use.

A302023 Permutation of natural numbers mapping ordinary factorization to "Fermi-Dirac factorization": a(1) = 1, a(2n) = 2*A300841(a(n)), a(A003961(n)) = A300841(a(n)).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 5, 24, 12, 10, 7, 30, 9, 14, 15, 120, 11, 40, 13, 42, 21, 18, 16, 168, 20, 22, 60, 54, 17, 56, 19, 840, 27, 26, 28, 210, 23, 32, 33, 216, 25, 72, 29, 66, 84, 34, 31, 1080, 35, 70, 39, 78, 37, 280, 36, 264, 48, 38, 41, 270, 43, 46, 108, 7560, 44, 88, 47, 96, 51, 90, 49, 1512, 53, 50, 105, 102, 45, 104, 59, 1320
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2018

Keywords

Comments

See comments and additional formulas in A302024.

Crossrefs

Cf. A302024 (inverse).
Cf. also A091202, A302025.

Programs

  • PARI
    up_to = 32768;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300841(n) = A052330(2*A052331(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A302023(n) = if(1==n,n,if(!(n%2),2*A300841(A302023(n/2)),A300841(A302023(A064989(n)))));

Formula

a(1) = 1; a(2n) = 2*A300841(a(n)), a(2n+1) = A300841(a(A064989(2n+1))). [corrected Jun 10 2018]
a(n) = A052330(A156552(n)).
a(A000040(n)) = A050376(n).

A305417 Permutation of natural numbers: a(0) = 1, a(2n) = A305421(a(n)), a(2n+1) = 2*a(n).

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 5, 8, 11, 14, 9, 12, 21, 10, 15, 16, 13, 22, 29, 28, 49, 18, 27, 24, 69, 42, 63, 20, 107, 30, 17, 32, 19, 26, 23, 44, 35, 58, 39, 56, 127, 98, 83, 36, 151, 54, 45, 48, 81, 138, 207, 84, 475, 126, 65, 40, 743, 214, 189, 60, 273, 34, 51, 64, 25, 38, 53, 52, 121, 46, 57, 88, 173, 70, 101, 116, 233, 78, 105, 112, 199, 254, 129
Offset: 0

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A005940, but note the indexing: here the domain starts from 0, although the range excludes zero.
This sequence can be represented as a binary tree. Each child to the left is obtained by applying A305421 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
7......../ \........6 5......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
11 14 9 12 21 10 15 16
13 22 29 28 49 18 27 24 69 42 63 20 107 30 17 32
Sequence A305427 is obtained by scanning the same tree level by level from right to left.

Crossrefs

Cf. A305418 (inverse), A305427 (mirror image).
Cf. A014580 (left edge from 2 onward), A305421.
Cf. also A005940, A052330, A091202.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };
    A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305417(n) = if(0==n,(1+n),if(!(n%2),A305421(A305417(n/2)),2*(A305417((n-1)/2))));

Formula

a(0) = 1, a(2n) = A305421(a(n)), a(2n+1) = 2*a(n).
a(n) = A305427(A054429(n)).
For all n >= 1, a(A000079(n-1)) = A014580(n).

A305427 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = 2*a(n), a(2n+1) = A305421(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 6, 7, 16, 15, 10, 21, 12, 9, 14, 11, 32, 17, 30, 107, 20, 63, 42, 69, 24, 27, 18, 49, 28, 29, 22, 13, 64, 51, 34, 273, 60, 189, 214, 743, 40, 65, 126, 475, 84, 207, 138, 81, 48, 45, 54, 151, 36, 83, 98, 127, 56, 39, 58, 35, 44, 23, 26, 19, 128, 85, 102, 1911, 68, 819, 546, 4113, 120, 455, 378, 3253, 428, 1833, 1486, 925, 80
Offset: 0

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

Note the indexing: Domain starts from 0, while range starts from 1.
This is GF(2)[X] analog of A163511.
This sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A305421 to the parent:
1
|
...................2...................
4 3
8......../ \........5 6......../ \........7
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 15 10 21 12 9 14 11
32 17 30 107 20 63 42 69 24 27 18 49 28 29 22 13
etc.
Sequence A305417 is obtained by scanning the same tree level by level from right to left.

Crossrefs

Cf. A305428 (inverse), A305417 (mirror image).
Cf. A305421.
Cf. also A091202, A163511.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };
    A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305427(n) = if(n<=1,(1+n),if(!(n%2),2*A305427(n/2),A305421(A305427((n-1)/2))));

Formula

a(0) = 1, a(1) = 2, a(2n) = 2*a(n), a(2n+1) = A305421(a(n)).
a(n) = A305417(A054429(n)).
Previous Showing 11-20 of 20 results.