cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A145484 Primes p such that 2*p - 29 is a positive prime.

Original entry on oeis.org

17, 23, 29, 41, 59, 71, 83, 89, 101, 113, 131, 149, 173, 191, 239, 269, 293, 311, 353, 401, 419, 443, 479, 491, 503, 521, 563, 569, 653, 659, 701, 719, 761, 821, 863, 881, 953, 971, 1013, 1049, 1091, 1151, 1163, 1181, 1193, 1223, 1289, 1319, 1361, 1409
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 29; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa (* Artur Jasinski *)
    Select[Prime[Range[7,300]],PrimeQ[2#-29]&] (* Harvey P. Dale, Dec 14 2010 *)

Formula

a(n) = 2*A145478(n) - 29.

A145485 Primes p such that 2*p - 31 is prime.

Original entry on oeis.org

17, 19, 31, 37, 67, 79, 97, 127, 151, 157, 181, 199, 277, 331, 337, 379, 409, 421, 457, 499, 541, 547, 577, 601, 631, 661, 727, 739, 751, 757, 787, 829, 877, 907, 991, 1009, 1021, 1087, 1117, 1171, 1201, 1249, 1291, 1381, 1399, 1459, 1549, 1597, 1609, 1669
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 31; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(2*p-31), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n) = 2*A145479(n) - 31.

A145486 Primes p such that 2*p - 37 is prime.

Original entry on oeis.org

37, 67, 73, 97, 109, 139, 157, 193, 223, 229, 307, 349, 373, 397, 433, 457, 487, 523, 577, 619, 643, 709, 733, 823, 829, 853, 907, 919, 1033, 1063, 1087, 1129, 1153, 1213, 1237, 1279, 1297, 1327, 1447, 1543, 1549, 1579, 1609, 1627, 1669, 1699, 1747, 1753
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 37; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(2*p-37), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n)=2*A145480(n)-37

A145488 Numbers k such that 6k+13 is prime and 12k+13 is also prime.

Original entry on oeis.org

0, 4, 5, 8, 14, 15, 19, 25, 28, 30, 33, 35, 44, 49, 50, 54, 60, 68, 70, 85, 88, 93, 99, 100, 103, 120, 123, 133, 140, 144, 145, 149, 154, 168, 170, 173, 175, 179, 184, 190, 198, 215, 228, 235, 245, 253, 259, 264, 268, 274, 275, 280, 285, 288, 294
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Maple
    select(k -> isprime(6*k+13) and isprime(12*k+13), [$0..1000]); # Robert Israel, Jan 23 2017
  • Mathematica
    aa = {}; k = 13; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (Prime[n] - k)/12]], {n, 1, 500}]; aa

Formula

a(n) = (A145474(n)-13)/12.

Extensions

Definition corrected by Ivan Neretin, Jan 23 2017

A145489 Numbers k such that 6k + 11 is prime and 12k + 5 is also prime.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 12, 16, 21, 23, 26, 37, 38, 42, 43, 47, 51, 56, 58, 63, 68, 73, 78, 91, 92, 98, 101, 106, 107, 108, 133, 136, 141, 142, 156, 157, 162, 173, 192, 196, 201, 203, 212, 218, 227, 233, 236, 238, 246, 247, 257, 267, 268, 271, 287, 296, 306, 313, 316, 323, 327, 332, 346, 353, 357, 366, 367, 371, 376, 387, 401, 406, 411, 423, 441, 442, 448, 453, 471, 472, 478, 483, 488, 491, 498
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,500], PrimeQ[6# + 11 ] && PrimeQ[12# + 5]&]
  • PARI
    isok(n) = isprime(6*n+11) && isprime(12*n+5); \\ Michel Marcus, Jan 24 2017

Formula

a(n) = (A145475(n) - 5)/12.

Extensions

Corrected by Artur Jasinski, Apr 01 2011

A353702 Composite k such that tau(k') = (tau(k))', where tau(k) is the number of divisors of k (A000005) and k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

12, 15, 21, 26, 27, 33, 38, 57, 62, 69, 74, 85, 88, 93, 106, 108, 129, 133, 134, 145, 166, 177, 178, 205, 213, 217, 218, 226, 237, 248, 249, 253, 254, 262, 265, 278, 309, 314, 328, 362, 375, 376, 393, 398, 417, 422, 424, 445, 459, 466, 469, 488, 489, 493, 502
Offset: 1

Views

Author

Marius A. Burtea, May 07 2022

Keywords

Comments

Since for any prime number p, p' = 1 and (tau(p))' = 2' = 1 = tau(1) = tau (p'), the sequence requires only composite numbers that satisfy the given relation.
For p in A092109 the number m = 3*p is a term. Indeed, (tau(m))' = (tau(3*p))' = 4' = 4 and tau(m') = tau((3*p)') = tau(p + 3) = 4, so m is a term.
If p is in A045536 then p, p + 2 and 2*p + 1 are prime numbers and m = 3*(2*p + 1) is a term. Indeed, tau(m') = tau((3*(2*p + 1))') = tau(2*p + 4) = tau(2*(p+2)) = 4 and (tau(m))' = (tau((3*(2*p + 1)))' = 4' = 4, so m is a term.
If k is in A174100 then the numbers 2*k + 1 and 6*k + 1 are prime numbers and the numbers m = 2*(6*k + 1) is a term. Indeed, (tau(m))' = (tau(2*(6*k + 1)) )' = 4' = 4 and tau(m') = tau(2*(6*k + 1))') = tau(6*k + 3) = tau(2*(2*k + 1)) = 4, so m is a term.

Examples

			12' = 16, (tau(12)) = 6' = 5 and tau(12') = tau(16) = tau(2^4) = 5, so 12 is a term.
15' = 8, (tau(15))’ = 4' = 4 and tau(15') = tau(8) = tau(2^3) = 4, so 15 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [p:p in [3..550]|not IsPrime(p) and  #Divisors(Floor(f(p))) eq Floor(f(#Divisors(p)))];
    
  • Maple
    isA353702 := proc(n)
        if not isprime(n) and numtheory[tau](A003415(n)) = A003415( numtheory[tau](n) ) then
            true ;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA353702(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 05 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[500], CompositeQ[#] && DivisorSigma[0, d[#]] == d[DivisorSigma[0, #]] &] (* Amiram Eldar, May 07 2022 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = (k>1) && !isprime(k) && numdiv(ad(k)) == ad(numdiv(k)); \\ Michel Marcus, May 08 2022
Previous Showing 21-26 of 26 results.