cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A091306 Sum of squares of unitary, squarefree divisors of n, including 1.

Original entry on oeis.org

1, 5, 10, 1, 26, 50, 50, 1, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 10, 1, 850, 1, 50, 842, 1300, 962, 1, 1220, 1450, 1300, 1, 1370, 1810, 1700, 26, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 5, 3172, 50, 3620
Offset: 1

Views

Author

Vladeta Jovovic, Feb 23 2004

Keywords

Comments

If b(n,k) = sum of k-th powers of unitary, squarefree divisors of n, including 1, then b(n,k) is multiplicative with b(p,k)=p^k+1 and b(p^e,k)=1 for e>1.
Dirichlet g.f.: zeta(s)*product_{primes p} (1+p^(2-s)-p^(2-2s)). Dirichlet convolution of A000012 with the multiplicative sequence 1, 4, 9, -4, 25, 36, 49, 0, -9, 100, 121, -36, 169, 196,... - R. J. Mathar, Aug 28 2011

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p^2 + 1, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 30 2019*)

Formula

Multiplicative with a(p)=p^2+1 and a(p^e)=1 for e>1.
From Vaclav Kotesovec, Nov 20 2021: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-2) * Product_{primes p} (1 + p^(4 - 3*s) - p^(2 - 2*s) - p^(4 - 2*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^3 / 3, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.576152735385667059520611078264117275406247116802896188...
(End)

A363289 Sum of the divisor complements of the unitary squarefree divisors of n.

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 8, 9, 18, 12, 16, 14, 24, 24, 16, 18, 27, 20, 24, 32, 36, 24, 32, 25, 42, 27, 32, 30, 72, 32, 32, 48, 54, 48, 36, 38, 60, 56, 48, 42, 96, 44, 48, 54, 72, 48, 64, 49, 75, 72, 56, 54, 81, 72, 64, 80, 90, 60, 96, 62, 96, 72, 64, 84, 144, 68, 72, 96, 144, 72
Offset: 1

Views

Author

Wesley Ivan Hurt, May 26 2023

Keywords

Crossrefs

Cf. A092261.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, n/# &, CoprimeQ[#, n/#] && SquareFreeQ[#] &]; Array[a, 100] (* Amiram Eldar, May 26 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if ((gcd(d, n/d) == 1) && issquarefree(d), n/d)); \\ Michel Marcus, May 26 2023

Formula

a(n) = n * Sum_{d|n, gcd(d,n/d)=1} mu(d)^2 / d.
Previous Showing 21-22 of 22 results.