cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A367709 Decimal expansion of BesselJ(0,2*sqrt(2)) (negated).

Original entry on oeis.org

1, 9, 6, 5, 4, 8, 0, 9, 5, 2, 7, 0, 4, 6, 8, 2, 0, 0, 0, 4, 0, 7, 9, 3, 3, 7, 2, 0, 8, 7, 9, 3, 2, 2, 3, 1, 3, 2, 5, 8, 8, 9, 7, 8, 7, 3, 1, 0, 8, 9, 3, 0, 7, 7, 1, 8, 0, 5, 7, 3, 4, 2, 9, 5, 1, 3, 9, 4, 8, 8, 2, 6, 3, 4, 4, 4, 4, 0, 6, 1, 6, 9, 8, 8, 0, 1, 5, 9, 3, 4, 3, 5, 7, 6, 9, 8, 4, 9, 3, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			-0.19654809527046820004079337208793223...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselJ[0, 2 Sqrt[2]], 10, 100][[1]]

Formula

Equals Sum_{k>=0} (-2)^k / k!^2.

A383216 Primes p which are preceded and followed by gaps whose difference is greater than 2*log(p).

Original entry on oeis.org

113, 127, 523, 887, 907, 1087, 1129, 1151, 1277, 1327, 1361, 1669, 1693, 1931, 1951, 1973, 2203, 2311, 2333, 2477, 2557, 2971, 2999, 3163, 3251, 3299, 3469, 4049, 4297, 4327, 4523, 4547, 4783, 4861, 5119, 5147, 5237, 5351, 5381, 5531, 5557, 5591, 5749, 5779, 5981
Offset: 1

Views

Author

Alain Rocchelli, Apr 19 2025

Keywords

Comments

Primes prime(k) such that abs(prime(k-1)-2*prime(k)+prime(k+1)) > 2*log(prime(k)), where log is the natural logarithm.

Examples

			113 is a term because abs(109-2*113+127)=12 and 2*log(113)=9.4548.
127 is a term because abs(113-2*127+131)=10 and 2*log(127)=9.6884.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2,782]],Abs[NextPrime[#,-1]-2#+NextPrime[#]]>2Log[#]&] (* James C. McMahon, Apr 27 2025 *)
  • PARI
    forprime(P=3, 6000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR1=min(M,Q), AR2=max(M,Q), AR0=2*log(P)); if(AR2-AR1>AR0, print1(P,", ")));

Formula

Limit_{n->oo} n / PrimePi(a(n)) = 1/e^2 (A092553).

A322506 Factorial expansion of 1/exp(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

0, 0, 0, 3, 1, 1, 3, 0, 6, 4, 7, 5, 2, 9, 9, 8, 10, 8, 9, 1, 13, 18, 1, 2, 8, 15, 26, 10, 22, 1, 18, 9, 20, 10, 2, 6, 13, 19, 16, 38, 38, 3, 32, 5, 39, 24, 7, 27, 14, 41, 20, 39, 32, 7, 20, 35, 44, 50, 24, 34, 51, 14, 39, 47, 49, 15, 61, 54, 60, 52, 34, 60, 32, 72, 48, 12, 67, 52, 22, 48
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			1/exp(2) = 0 + 0/2! + 0/3! + 3/4! + 1/5! + 1/6! + 3/7! + 0/8! + 6/9! +...
		

Crossrefs

Cf. A092553 (decimal expansion), 0 U A001204 (continued fraction).
Cf. A054977 (e), A067840 (e^2), A068453 (sqrt(e)), A237420 (1/e).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Exp(-2))] cat [Floor(Factorial(n)*Exp(-2)) - n*Floor(Factorial((n-1))*Exp(-2)) : n in [2..80]];
    
  • Mathematica
    With[{b = 1/E^2}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = exp(-2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=exp(-2);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]

A366134 Number of primes between prime(n) and prime(n)+2*log(prime(n)), exclusive.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 3, 2, 2, 1, 0, 1, 2, 1, 0, 2, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 0, 0, 3, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 0, 3, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Alain Rocchelli, Sep 30 2023

Keywords

Comments

Inspired by A365573.

Crossrefs

Programs

  • Mathematica
    a[n_]:=PrimePi[Prime[n]+2Log[Prime[n]]]-PrimePi[Prime[n]]; Array[a,95] (* Stefano Spezia, Sep 30 2023 *)
  • PARI
    a(n) = primepi(prime(n)+2*log(prime(n))) - primepi(prime(n))

Formula

Conjecture: Limit_{N->oo} (Ratio_{n=1..N} a(n)=0) = 1/e^2 (A092553).
Previous Showing 11-14 of 14 results.