cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A376742 Decimal expansion of Product_{p prime} (p^3 + 1)/(p^3 - 1).

Original entry on oeis.org

1, 4, 2, 0, 3, 0, 8, 3, 0, 3, 4, 8, 9, 1, 9, 3, 3, 5, 3, 2, 4, 8, 1, 8, 4, 4, 2, 7, 0, 6, 5, 4, 9, 0, 0, 6, 7, 5, 8, 6, 3, 9, 4, 6, 7, 1, 6, 3, 6, 8, 5, 6, 1, 8, 6, 8, 8, 2, 3, 5, 4, 3, 0, 6, 2, 1, 4, 2, 2, 9, 5, 4, 8, 4, 3, 6, 3, 4, 1, 7, 8, 3, 9, 2, 6, 4, 3, 1, 6, 8, 4, 0, 6, 1, 7, 3, 6, 4, 0, 5
Offset: 1

Views

Author

Stefano Spezia, Oct 03 2024

Keywords

Examples

			1.420308303489193353248184427065490...
		

References

  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986. See equation 1.2.8 at p. 5.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]^2/Zeta[6],10,100][[1]]
  • PARI
    prodeulerrat((p^3 + 1)/(p^3 - 1))

Formula

Equals zeta(3)^2/zeta(6) = Sum_{k>=1} 2^omega(k)/k^3. See Titchmarsh and Shamos.
Equals 945*zeta(3)^2/Pi^6.
Equals A157289 / A088453 = A013664 / A347328^2. - R. J. Mathar, Jul 14 2025

A257136 Decimal expansion of 2*Pi^6/945.

Original entry on oeis.org

2, 0, 3, 4, 6, 8, 6, 1, 2, 3, 9, 6, 8, 8, 9, 8, 2, 7, 9, 4, 2, 9, 0, 3, 5, 8, 5, 9, 5, 8, 1, 8, 4, 1, 0, 5, 5, 8, 0, 3, 6, 3, 4, 9, 8, 0, 0, 6, 5, 7, 0, 7, 1, 2, 3, 6, 8, 4, 8, 1, 7, 3, 2, 8, 0, 0, 8, 6, 6, 4, 3, 6, 5, 8, 0, 3, 9, 1, 5, 7, 9, 5, 7, 6, 5, 5, 4, 7, 9, 5, 5, 8, 7, 7, 0, 7, 0, 3, 4, 1, 0, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2015

Keywords

Examples

			2.034686123968898279429035859581841055803634980065707123684817328...
		

References

  • L. J. P. Kilford, Modular Forms: A Classical and Computational Introduction, Imperial College Press, (2008) p. 15.

Crossrefs

Programs

Formula

2*Pi^6/945 = 2*zeta(6) = G_6(infinity), where the function G_k(z) is the Eisenstein nonzero modular form of weight k.

A194657 Decimal expansion of (4*Pi^6*log(2) - 90*Pi^4*zeta(3) + 1350*Pi^2*zeta(5) - 5715*zeta(7))/1536.

Original entry on oeis.org

1, 1, 7, 5, 7, 5, 8, 3, 4, 0, 7, 2, 3, 3, 2, 4, 8, 2, 0, 6, 2, 4, 2, 9, 0, 6, 7, 9, 4, 9, 1, 4, 7, 5, 8, 4, 3, 3, 4, 1, 6, 4, 3, 8, 9, 9, 8, 1, 6, 2, 9, 0, 8, 8, 8, 6, 9, 5, 3, 0, 2, 4, 7, 6, 4, 9, 1, 9, 1, 2, 8, 4, 2, 7, 1, 5, 5, 9, 4, 7, 1, 1, 8, 2, 6, 8, 8, 8, 9, 0, 0, 3, 1, 4, 1, 1, 5, 9, 4, 4, 7, 1, 9, 9, 4
Offset: 0

Views

Author

Seiichi Kirikami, Sep 01 2011

Keywords

Comments

The absolute value of the integral {x=0..Pi/2} x^5*log(sin(x )) dx or (d^5/da^5 (integral {x=0..Pi/2} sin(ax)*log(sin(x )) dx)) at a=0. The absolute value of m=2 of (-1)^(m+1)*(sum {n=1..infinity} (limit {a -> 0} (d^(2m+1)/da^(2m+1) ((1-cos((a+2n)*Pi/2))/n/(a+2n)))))-(pi/2)^2(m+1)*log(2)/2/(m+1).

Examples

			0.11757583407233248206...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 1.441.2

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[(4 Pi^6*Log[2]-90 Pi^4*Zeta[3]+1350 Pi^2*Zeta[5]-5715 Pi^2*Zeta[7])/1536,150]][[1]]

Formula

Equals (4*A092732*A002162-90*A092425*A002117+1350*A002388*A013663-5715*A013665)/1536.
Previous Showing 11-13 of 13 results.