cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A094733 Number of connected ordered 6-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 727, 64357, 7512151, 1143589261, 177189092767, 23695071256837, 2668384623898951, 260281239918269821, 22750998388694399407, 1832528834698360763317, 138901315742774351716951, 10061570091146133148587181, 704453005976484684303395647
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[63*x] - 30*Exp[47*x] + 120*Exp[39*x] + 60*Exp[35*x] + 60*Exp[33*x] - 18*Exp[32*x] - 324*Exp[31*x] - 720*Exp[29*x] + 810*Exp[27*x] + 120*Exp[26*x] + 480*Exp[25*x] + 480*Exp[24*x] - 900*Exp[23*x] - 720*Exp[22*x] - 240*Exp[21*x] - 900*Exp[20*x] + 2640*Exp[19*x] + 615*Exp[18*x] + 480*Exp[17*x] + 510*Exp[16*x] - 2955*Exp[15*x] - 5070*Exp[14*x] + 3960*Exp[13*x] + 7320*Exp[12*x] - 8640*Exp[11*x] - 4860*Exp[10*x] + 10620*Exp[9*x] + 9210*Exp[8*x] - 21910*Exp[7*x] + 16290*Exp[6*x] - 120*Exp[5*x] - 34470*Exp[4*x] + 53925*Exp[3*x] - 34950*Exp[2*x] + 10208*Exp[x] - 1082, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 08 2017 *)

Formula

E.g.f.: exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 324*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 900*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 2640*exp(19*x) + 615*exp(18*x) + 480*exp(17*x) + 510*exp(16*x) - 2955*exp(15*x) - 5070*exp(14*x) + 3960*exp(13*x) + 7320*exp(12*x) - 8640*exp(11*x) - 4860*exp(10*x) + 10620*exp(9*x) + 9210*exp(8*x) - 21910*exp(7*x) + 16290*exp(6*x) - 120*exp(5*x) - 34470*exp(4*x) + 53925*exp(3*x) - 34950*exp(2*x) + 10208*exp(x) - 1082.

A094734 Number of connected 2-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 4, 19, 76, 271, 904, 2899, 9076, 27991, 85504, 259579, 784876, 2366911, 7125304, 21425059, 64373476, 193317031, 580344304, 1741819339, 5227030876, 15684238351, 47059006504, 141189602419, 423593973076, 1270832250871, 3812597415904, 11437993574299
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{6,-11,6},{1,1,4},30]] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((1/2!)*(exp(3*x) - 3*exp(2*x) + 5*exp(x) - 3)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/2!)*(exp(3*x) - 3*exp(2*x) + 5*exp(x) - 3).
From Colin Barker, Jul 13 2013: (Start)
a(n) = (5 - 3*2^n + 3^n)/2 for n > 0.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 3.
G.f.: -x*(9*x^2-5*x+1)/((x-1)*(2*x-1)*(3*x-1)). (End)

Extensions

More terms from Colin Barker, Jul 13 2013

A094735 Number of connected 3-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 8, 75, 796, 8051, 73788, 623155, 4965836, 38028051, 283400668, 2072874035, 14966280876, 107083717651, 761327161148, 5388524417715, 38017832427916, 267623218488851, 1880883687651228, 13203904989574195, 92616374066478956, 649261556308773651
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(7^n-6*5^n+20*3^n+3*4^n-39*2^n+35)/6(1-UnitStep[-n]), {n, 0, 20}] (* Benedict W. J. Irwin, May 25 2016 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((1/3!)*(exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 20*exp(3*x) - 39*exp(2*x) + 35*exp(x) - 14)))) \\ G. C. Greubel, Oct 08 2017

Formula

E.g.f.: (1/3!)*(exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 20*exp(3*x) - 39*exp(2*x) + 35*exp(x) - 14).
G.f.: -x*(1960*x^5 - 1695*x^4 + 731*x^3 - 176*x^2 + 21*x - 1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Jul 13 2013
a(n) = (7^n - 6*5^n + 20*3^n + 3*4^n - 39*2^n + 35)/6, n > 0. - Benedict W. J. Irwin, May 25 2016

Extensions

More terms from Colin Barker, Jul 13 2013

A094736 Number of connected 4-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 13, 189, 3816, 88646, 2013383, 42040699, 807900526, 14537331816, 249111237453, 4119281678909, 66371933499236, 1049372070568186, 16362812045380723, 252561404639492319, 3869204360738213946, 58948921926491795756, 894453362388005059193
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(314 - 501*2^n + 3*2^(2 + 2 n) + 359*3^n + 2^n*3^(3 + n) + 8*3^(1 + 2 n) - 132*5^n - 2*7^n - 12*11^n + 15^n)/ 24 (1 - UnitStep[-n]), {n, 0, 20}] (* Benedict W. J. Irwin, May 25 2016 *)
  • PARI
    concat(0, Vec(x*(1-62*x +1651*x^2 -24816*x^3 +233562*x^4 -1431634*x^5 +5791471*x^6 -15717948*x^7 +28663875*x^8 -28066500*x^9) / ((1 -x)*(1 -2*x)*(1 -3*x)*(1 -4*x)*(1 -5*x)*(1 -6*x)*(1 -7*x)*(1 -9*x)*(1 -11*x)*(1 -15*x)) + O(x^50))) \\ Colin Barker, May 25 2016

Formula

E.g.f.: (1/4!)*(exp(15*x) -12*exp(11*x) +24*exp(9*x) -2*exp(7*x) +27*exp(6*x) -132*exp(5*x) +12*exp(4*x) +359*exp(3*x) -501*exp(2*x) +314*exp(x)-90).
a(n) = (314-501*2^n+3*2^(2+2n)+359*3^n+2^n*3^(3+n)+8*3^(1+2n)-132*5^n-2*7^n-12*11^n+15^n)/24, n>0. - Benedict W. J. Irwin, May 25 2016
G.f.: x*(1-62*x +1651*x^2 -24816*x^3 +233562*x^4 -1431634*x^5 +5791471*x^6 -15717948*x^7 +28663875*x^8 -28066500*x^9) / ((1 -x)*(1 -2*x)*(1 -3*x)*(1 -4*x)*(1 -5*x)*(1 -6*x)*(1 -7*x)*(1 -9*x)*(1 -11*x)*(1 -15*x)). - Colin Barker, May 25 2016

A094737 Number of connected 5-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 19, 387, 12796, 588332, 30409555, 1510137553, 68451901642, 2839832714238, 109655179461961, 4007814663515939, 140559147215148208, 4779718456846032064, 158823449312897655487, 5186933187595033751445
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ (3434 - 1095*4^n + 5*16^n - 3545*2^(n + 1) + 5*2^(3 n + 5) + 6665*3^n + 860*9^n + 5*4^(n + 1)*3^(n + 2) - 2106*5^n - 17*3^n*5^(n + 1) + 185*6^(n + 1) - 15*2^(n + 3)*7^n - 15*7^(n + 2) - 11*10^(n + 1) - 540*11^n + 150*13^n + 20*17^n + 60*19^n - 20*23^n + 31^n)/120 (1 - UnitStep[-n]), {n, 0, 20}] (* Benedict W. J. Irwin, May 25 2016 *)

Formula

E.g.f.: (1/5!)*(exp(31*x) -20*exp(23*x) +60*exp(19*x) +20*exp(17*x) +5*exp(16*x) -85*exp(15*x) -120*exp(14*x) +150*exp(13*x) +180*exp(12*x) -540*exp(11*x) -110*exp(10*x) +860*exp(9*x) +160*exp(8*x) -735*exp(7*x) +1110*exp(6*x) -2106*exp(5*x) -1095*exp(4*x) +6665*exp(3*x) -7090*exp(2*x) +3434*exp(x)-744).
a(n) = (3434 - 1095*4^n + 5*16^n - 3545*2^(n+1) + 5*2^(3n+5) + 6665*3^n + 860*9^n + 5*4^(n+1)*3^(n+2) - 2106*5^n - 17*3^n*5^(n+1) + 185*6^(n+1) - 15*2^(n+3)*7^n - 15*7^(n+2) - 11*10^(n+1) - 540*11^n + 150*13^n + 20*17^n + 60*19^n - 20*23^n + 31^n)/120, n>0. - Benedict W. J. Irwin, May 25 2016
Previous Showing 11-15 of 15 results.