cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A154849 Decimal expansion of log_4 (17).

Original entry on oeis.org

2, 0, 4, 3, 7, 3, 1, 4, 2, 0, 6, 2, 5, 1, 6, 9, 7, 0, 4, 1, 2, 7, 0, 3, 3, 0, 0, 5, 4, 0, 5, 2, 0, 2, 1, 7, 7, 0, 0, 5, 6, 3, 3, 6, 4, 1, 1, 7, 2, 4, 1, 0, 3, 4, 4, 0, 6, 3, 3, 0, 4, 5, 3, 2, 1, 9, 3, 3, 4, 8, 2, 5, 4, 5, 2, 3, 6, 9, 1, 0, 3, 4, 1, 4, 8, 6, 7, 1, 5, 7, 5, 9, 2, 1, 8, 4, 2, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.0437314206251697041270330054052021770056336411724103440633...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), this sequence, A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 17], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A154909 Decimal expansion of log_4 (18).

Original entry on oeis.org

2, 0, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.0849625007211561814537389439478165087598144076924810604557...
		

Crossrefs

Cf. A020857 (log_2(3)).
Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), this sequence, A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 18], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

Equals A020857+1/2. - R. J. Mathar, Feb 15 2025

A155004 Decimal expansion of log_4 (19).

Original entry on oeis.org

2, 1, 2, 3, 9, 6, 3, 7, 5, 6, 7, 2, 1, 7, 9, 2, 7, 4, 6, 8, 9, 6, 7, 5, 9, 7, 1, 1, 4, 5, 3, 4, 1, 7, 2, 1, 1, 3, 4, 6, 7, 5, 3, 7, 8, 4, 8, 3, 0, 7, 6, 7, 0, 0, 7, 2, 9, 0, 7, 6, 2, 3, 6, 5, 4, 3, 2, 2, 8, 2, 6, 0, 4, 1, 0, 2, 7, 3, 2, 4, 4, 3, 4, 0, 1, 3, 5, 4, 0, 2, 7, 0, 8, 6, 0, 8, 8, 2, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1239637567217927468967597114534172113467537848307670072907...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), this sequence, A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

A155183 Decimal expansion of log_4 (20).

Original entry on oeis.org

2, 1, 6, 0, 9, 6, 4, 0, 4, 7, 4, 4, 3, 6, 8, 1, 1, 7, 3, 9, 3, 5, 1, 5, 9, 7, 1, 4, 7, 4, 4, 6, 9, 5, 0, 8, 7, 9, 3, 2, 4, 1, 5, 6, 9, 6, 5, 1, 2, 2, 9, 0, 3, 0, 6, 0, 2, 7, 3, 7, 8, 1, 9, 7, 9, 0, 7, 9, 6, 7, 3, 8, 8, 3, 0, 4, 3, 1, 2, 6, 0, 7, 9, 2, 5, 0, 6, 9, 8, 7, 1, 6, 7, 9, 6, 8, 5, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1609640474436811739351597147446950879324156965122903060273...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), this sequence, A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 20], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

Equals 1/2+ A154155 = 1 + A153201. - R. J. Mathar, May 25 2023

A155545 Decimal expansion of log_4 (21).

Original entry on oeis.org

2, 1, 9, 6, 1, 5, 8, 7, 1, 1, 3, 8, 9, 3, 8, 0, 1, 4, 4, 4, 4, 7, 8, 5, 4, 1, 3, 0, 5, 8, 9, 8, 2, 3, 6, 5, 8, 7, 0, 0, 4, 2, 0, 5, 1, 6, 8, 2, 9, 3, 1, 0, 9, 2, 2, 0, 6, 6, 5, 2, 2, 1, 8, 9, 3, 0, 5, 7, 0, 9, 5, 3, 8, 3, 2, 8, 2, 7, 5, 7, 7, 4, 5, 1, 0, 0, 7, 0, 7, 3, 7, 0, 4, 4, 1, 4, 9, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1961587113893801444478541305898236587004205168293109220665...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), this sequence, A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 21], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A155695 Decimal expansion of log_4 (22).

Original entry on oeis.org

2, 2, 2, 9, 7, 1, 5, 8, 0, 9, 3, 1, 8, 6, 4, 8, 6, 2, 8, 0, 9, 9, 6, 8, 1, 5, 2, 3, 3, 6, 2, 8, 9, 6, 4, 7, 9, 3, 5, 1, 6, 1, 5, 7, 6, 2, 8, 4, 0, 8, 8, 4, 0, 3, 5, 6, 5, 6, 4, 0, 0, 8, 2, 2, 8, 6, 3, 1, 6, 5, 3, 0, 9, 8, 6, 0, 0, 0, 9, 1, 7, 6, 3, 5, 4, 7, 4, 5, 6, 4, 9, 6, 4, 3, 4, 5, 0, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2297158093186486280996815233628964793516157628408840356564...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), this sequence, A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4,22],10,100][[1]]  (* Harvey P. Dale, Apr 18 2011 *)

A155818 Decimal expansion of log_4 (23).

Original entry on oeis.org

2, 2, 6, 1, 7, 8, 0, 9, 7, 8, 0, 2, 8, 5, 0, 6, 4, 3, 6, 1, 4, 7, 0, 7, 4, 1, 2, 2, 0, 8, 1, 3, 3, 4, 4, 2, 2, 2, 4, 9, 4, 1, 2, 5, 6, 2, 7, 2, 1, 2, 7, 7, 5, 2, 9, 7, 4, 7, 2, 2, 1, 8, 6, 6, 0, 0, 7, 3, 8, 9, 0, 7, 2, 7, 8, 1, 3, 8, 2, 3, 4, 8, 0, 5, 5, 3, 7, 7, 2, 6, 2, 9, 3, 1, 0, 4, 4, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2617809780285064361470741220813344222494125627212775297472...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), this sequence, A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 23], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A155936 Decimal expansion of log_4 (24).

Original entry on oeis.org

2, 2, 9, 2, 4, 8, 1, 2, 5, 0, 3, 6, 0, 5, 7, 8, 0, 9, 0, 7, 2, 6, 8, 6, 9, 4, 7, 1, 9, 7, 3, 9, 0, 8, 2, 5, 4, 3, 7, 9, 9, 0, 7, 2, 0, 3, 8, 4, 6, 2, 4, 0, 5, 3, 0, 2, 2, 7, 8, 7, 6, 3, 2, 7, 2, 7, 0, 5, 4, 9, 1, 1, 3, 8, 9, 7, 1, 7, 9, 2, 8, 1, 2, 6, 1, 1, 4, 0, 2, 3, 7, 4, 5, 9, 0, 4, 4, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2924812503605780907268694719739082543799072038462405302278...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), this sequence.

Programs

  • Mathematica
    RealDigits[Log[4, 24], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

3/2 + A094148. - R. J. Mathar, Sep 24 2011

A100831 Decimal expansion of log(4)/log(3).

Original entry on oeis.org

1, 2, 6, 1, 8, 5, 9, 5, 0, 7, 1, 4, 2, 9, 1, 4, 8, 7, 4, 1, 9, 9, 0, 5, 4, 2, 2, 8, 6, 8, 5, 5, 2, 1, 7, 0, 8, 5, 9, 9, 1, 7, 1, 2, 8, 0, 2, 6, 3, 7, 6, 0, 8, 5, 5, 7, 4, 1, 3, 0, 9, 8, 8, 7, 6, 7, 7, 3, 7, 0, 4, 0, 2, 7, 6, 1, 8, 2, 9, 6, 1, 0, 1, 2, 2, 3, 4, 5, 3, 7, 7, 0, 9, 8, 9, 0, 3, 4, 9, 1, 1, 2, 2, 7, 0
Offset: 1

Views

Author

Lekraj Beedassy, Jan 07 2005

Keywords

Comments

log_3(4) is the Hausdorff dimension of the Koch snowflake.
A transcendental number. Also the Hausdorff dimension of 2D Cantor dust (for N-dimensional Cantor dust, see A102525). - Stanislav Sykora, Apr 19 2016

Examples

			log(4)/log(3) = 1.26185950714291487419905422868552170859917128...
		

References

  • Martin Gardner, Aha! Gotcha!, "A Pathological Curve", W. H. Freeman, NY, 1982, p. 77.
  • Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, University of Chicago Press, IL, 1983, p. 227.
  • Martin Gardner, The Colossal Book of Mathematics, W. W. Norton, NY, 2001, p. 322.
  • Nigel Lesmoir-Gordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, p. 28.
  • Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 177.
  • David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin Books, 1991, pp. 135-136.

Crossrefs

Programs

Formula

Equals 2*A102525. - Stanislav Sykora, Apr 19 2016

Extensions

More terms from Robert G. Wilson v, Jan 07 2005
Previous Showing 11-19 of 19 results.