cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A217218 Trajectory of 44 under the map k -> A006368(k).

Original entry on oeis.org

44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59
Offset: 1

Views

Author

N. J. A. Sloane, Oct 04 2012

Keywords

Comments

Periodic with period length 12.
It is believed that this is the longest trajectory that cycles (the others are {1}, {2,3}, {4,6,9,7,5}).

References

  • See also references and links in A006368.

Crossrefs

Programs

  • Haskell
    a217218 n = a217218_list !! (n-1)
    a217218_list = iterate a006368 44  -- Reinhard Zumkeller, Apr 06 2013
    
  • Magma
    &cat[ [44,66,99,74,111,83,62,93,70,105,79,59]: n in [0..9] ]; // Vincenzo Librandi, Jun 28 2015
    
  • Mathematica
    t={44}; While[n=t[[-1]]; s=If[EvenQ[n], 3*n/2, Round[3*n/4]]; Length[t]<100&&!MemberQ[t, s], AppendTo[t, s]]; t (* Vincenzo Librandi, Jun 28 2015 *)
    PadRight[{},120,{44,66,99,74,111,83,62,93,70,105,79,59}] (* Harvey P. Dale, Jul 30 2025 *)
  • PARI
    Vec(x*(44 + 66*x + 99*x^2 + 74*x^3 + 111*x^4 + 83*x^5 + 62*x^6 + 93*x^7 + 70*x^8 + 105*x^9 + 79*x^10 + 59*x^11) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)) + O(x^40)) \\ Colin Barker, Aug 16 2019

Formula

a(n+1) = A006368(a(n)).
From Colin Barker, Aug 16 2019: (Start)
G.f.: x*(44 + 66*x + 99*x^2 + 74*x^3 + 111*x^4 + 83*x^5 + 62*x^6 + 93*x^7 + 70*x^8 + 105*x^9 + 79*x^10 + 59*x^11) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)).
a(n) = a(n-12) for n>12.
(End)

A217729 Trajectory of 40 under the map n-> A006369(n).

Original entry on oeis.org

40, 53, 71, 95, 127, 169, 225, 150, 100, 133, 177, 118, 157, 209, 279, 186, 124, 165, 110, 147, 98, 131, 175, 233, 311, 415, 553, 737, 983, 1311, 874, 1165, 1553, 2071, 2761, 3681, 2454, 1636, 2181, 1454, 1939, 2585, 3447, 2298, 1532, 2043, 1362, 908, 1211, 1615
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[40];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {40}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {40}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

A223083 Trajectory of 64 under the map n-> A006369(n).

Original entry on oeis.org

64, 85, 113, 151, 201, 134, 179, 239, 319, 425, 567, 378, 252, 168, 112, 149, 199, 265, 353, 471, 314, 419, 559, 745, 993, 662, 883, 1177, 1569, 1046, 1395, 930, 620, 827, 1103, 1471, 1961, 2615, 3487, 4649, 6199, 8265, 5510, 7347, 4898, 6531, 4354, 5805
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[64];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {64}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {64}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

A223088 Trajectory of 82 under the map n-> A006368(n).

Original entry on oeis.org

82, 123, 92, 138, 207, 155, 116, 174, 261, 196, 294, 441, 331, 248, 372, 558, 837, 628, 942, 1413, 1060, 1590, 2385, 1789, 1342, 2013, 1510, 2265, 1699, 1274, 1911, 1433, 1075, 806, 1209, 907, 680, 1020, 1530, 2295, 1721, 1291, 968, 1452, 2178, 3267, 2450, 3675
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
    t1:=[82];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {82}; While[n = t[[-1]]; s = If[EvenQ[n], 3*n/2, Round[3*n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {82}, 100] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

A094332 Iterate the map in A006368 starting at 12.

Original entry on oeis.org

12, 8, 11, 15, 10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, 115, 153, 102, 68, 91, 121, 161, 215, 287, 383, 511, 681, 454, 605, 807, 538, 717, 478, 637, 849, 566, 755, 1007, 1343, 1791, 1194, 796, 1061, 1415, 1887, 1258, 1677, 1118, 1491, 994, 1325, 1767, 1178, 1571
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2004

Keywords

Crossrefs

See A028384, A006368, A094328, etc. for more information.

A223084 Trajectory of 80 under the map n-> A006369(n).

Original entry on oeis.org

80, 107, 143, 191, 255, 170, 227, 303, 202, 269, 359, 479, 639, 426, 284, 379, 505, 673, 897, 598, 797, 1063, 1417, 1889, 2519, 3359, 4479, 2986, 3981, 2654, 3539, 4719, 3146, 4195, 5593, 7457, 9943, 13257, 8838, 5892, 3928, 5237, 6983, 9311, 12415, 16553, 22071
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[80];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {80}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {80}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

A223085 Trajectory of 82 under the map n-> A006369(n).

Original entry on oeis.org

82, 109, 145, 193, 257, 343, 457, 609, 406, 541, 721, 961, 1281, 854, 1139, 1519, 2025, 1350, 900, 600, 400, 533, 711, 474, 316, 421, 561, 374, 499, 665, 887, 1183, 1577, 2103, 1402, 1869, 1246, 1661, 2215, 2953, 3937, 5249, 6999, 4666, 6221, 8295, 5530, 7373
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[82];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {82}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {82}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)
    NestList[If[Divisible[#,3],(2#)/3,Floor[(4#)/3+1/2]]&,82,50] (* Harvey P. Dale, Sep 22 2019 *)

A223086 Trajectory of 64 under the map n-> A006368(n).

Original entry on oeis.org

64, 96, 144, 216, 324, 486, 729, 547, 410, 615, 461, 346, 519, 389, 292, 438, 657, 493, 370, 555, 416, 624, 936, 1404, 2106, 3159, 2369, 1777, 1333, 1000, 1500, 2250, 3375, 2531, 1898, 2847, 2135, 1601, 1201, 901, 676, 1014, 1521, 1141, 856, 1284, 1926, 2889
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
    t1:=[64];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {64}; While[n = t[[-1]]; s = If[EvenQ[n], 3 n/2, Round[3 n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {64}, 100] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

A223087 Trajectory of 80 under the map n-> A006368(n).

Original entry on oeis.org

80, 120, 180, 270, 405, 304, 456, 684, 1026, 1539, 1154, 1731, 1298, 1947, 1460, 2190, 3285, 2464, 3696, 5544, 8316, 12474, 18711, 14033, 10525, 7894, 11841, 8881, 6661, 4996, 7494, 11241, 8431, 6323, 4742, 7113, 5335, 4001, 3001, 2251, 1688, 2532, 3798, 5697
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
    t1:=[80];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {80}; While[n = t[[-1]]; s = If[EvenQ[n], 3*n/2, Round[3*n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {80}, 100] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

A368227 Square array read by ascending antidiagonals: row n is the trajectory of n under the A006369 map.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 5, 3, 3, 1, 0, 6, 7, 7, 2, 2, 1, 0, 7, 4, 9, 9, 3, 3, 1, 0, 8, 9, 5, 6, 6, 2, 2, 1, 0, 9, 11, 6, 7, 4, 4, 3, 3, 1, 0, 10, 6, 15, 4, 9, 5, 5, 2, 2, 1, 0, 11, 13, 4, 10, 5, 6, 7, 7, 3, 3, 1, 0, 12, 15, 17, 5, 13, 7, 4, 9, 9, 2, 2, 1, 0
Offset: 0

Views

Author

Paolo Xausa, Dec 18 2023

Keywords

Examples

			Array begins:
  [ 0]   0,  0,  0,  0,  0,  0,  0,  0,  0,   0,  0, ... = A000004
  [ 1]   1,  1,  1,  1,  1,  1,  1,  1,  1,   1,  1, ... = A000012
  [ 2]   2,  3,  2,  3,  2,  3,  2,  3,  2,   3,  2, ... = A010693
  [ 3]   3,  2,  3,  2,  3,  2,  3,  2,  3,   2,  3, ... = A176059
  [ 4]   4,  5,  7,  9,  6,  4,  5,  7,  9,   6,  4, ... = A094328
  [ 5]   5,  7,  9,  6,  4,  5,  7,  9,  6,   4,  5, ... = A094328 (shifted)
  [ 6]   6,  4,  5,  7,  9,  6,  4,  5,  7,   9,  6, ... = A094328 (shifted)
  [ 7]   7,  9,  6,  4,  5,  7,  9,  6,  4,   5,  7, ... = A094328 (shifted)
  [ 8]   8, 11, 15, 10, 13, 17, 23, 31, 41,  55, 73, ... = A028394
  [ 9]   9,  6,  4,  5,  7,  9,  6,  4,  5,   7,  9, ... = A094328 (shifted)
  [10]  10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, ... = A028394 (shifted)
  ...    |   |   |
      A001477|A168222
          A006369
		

Crossrefs

Programs

  • Mathematica
    A006369[n_]:=If[Divisible[n,3],2n/3,Round[4n/3]];
    A368227list[dmax_]:=With[{a=Reverse[Table[NestList[A006369,n-1,dmax-n],{n,dmax}]]},Array[Diagonal[a,#]&,dmax,1-dmax]];
    A368227list[15] (* Generates 15 antidiagonals *)
Previous Showing 11-20 of 20 results.