cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A216235 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 2 or if k-n >= 5, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 5, 0, 0, 0, 5, 9, 5, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 507, 417, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, ... row n=1
  0, 2, 5,  9, 14,  19,  19,   0,   0,   0, ... row n=2
  0, 0, 5, 14, 28,  47,  66,  66,   0,   0, ... row n=3
  0, 0, 0, 14, 42,  89, 155, 221, 221,   0, ... row n=4
  0, 0, 0,  0, 42, 131, 286, 507, 728, 728, ... row n=5
  ...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = A080937(n+1).
T(n,n+1) = A094790(n+1).
T(n,n+2) = A094789(n+1).
T(n,n+3) = T(n,n+4) = A005021(n).
Sum_{k=0..n} T(n-k,k) = A028495(n+1). - Philippe Deléham, Mar 23 2013

A215492 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=0, a(1)=3, and a(2)=6.

Original entry on oeis.org

0, 3, 6, 63, 147, 1365, 3528, 29694, 83643, 648270, 1964361, 14199171, 45789471, 311933118, 1060973088, 6871121775, 24463966674, 151720368891, 561841152579, 3357375513429, 12860706786396, 74437773850062, 293576471108319, 1653218198356074, 6686170310225133
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=B(n;3), where B(n;d), n=1,2,..., d \in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and C(n;3) are discussed in A121458 and A215484 respectively. Similarly as in A121458 we deduce that each of the following elements a(3*n), a(3*n+1), a(3*n+2) is divided by 3*7^n for every n=0,1,... .

Crossrefs

Programs

  • Magma
    I:=[0,3,6]; [n le 3 select I[n] else 21*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,3,6}, 50]
    CoefficientList[Series[(3 x + 6 x^2)/(1 - 21 x^2 - 7 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    concat(0,Vec((3+6*x)/(1-21*x^2-7*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

a(n) = (1/7)*((c(1)-c(4))*(1+3*c(1))^n + (c(2)-c(1))*(1+3*c(2))^n + (c(4)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper).
G.f.: (3*x+6*x^2)/(1-21*x^2-7*x^3).

A099918 A Chebyshev transform related to the 7th cyclotomic polynomial.

Original entry on oeis.org

1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1
Offset: 0

Views

Author

Paul Barry, Oct 30 2004

Keywords

Comments

The g.f. is a Chebyshev transform of 1/(1+x-2x^2-x^3) under the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The denominator is the 7th cyclotomic polynomial. The inverse of the 7 cyclotomic polynomial A014016 is given by sum{k=0..n, A099918(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}.

Crossrefs

Cf. A099860.

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{1,-1,2,-2,1,-1},90] (* Harvey P. Dale, May 25 2019 *)

Formula

G.f.: (1+x^2)^2/(1+x+x^2+x^3+x^4+x^5+x^6).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)^(-1)^k*b(n-2k), where b(n)=A094790(n/2+1)(1+(-1)^n)/2+A094789((n+1)/2)(1-(-1)^n)/2=(-1)^n*A006053(n+2).
Previous Showing 11-13 of 13 results.