cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A001341 Expansion of e.g.f. 6*exp(x)/(1-x)^4.

Original entry on oeis.org

6, 30, 174, 1158, 8742, 74046, 696750, 7219974, 81762438, 1005151902, 13336264686, 189992451270, 2893180308774, 46904155833918, 806663460996462, 14669947577257926, 281298999630211590, 5672559830998316574, 120014233288249367598, 2658221288671765756422
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A095000.

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[6*Exp[x]/(1 - x)^4, {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(6*exp(x)/(1-x)^4)) \\ Joerg Arndt, May 09 2013

Formula

a(n) = ceiling( n!*(n^3 + 3*n^2 + 5*n + 2)*exp(1) ). - Mark van Hoeij, Nov 11 2009
G.f.: Q(0)*(1-x)^2/x^3 - 2/x + 1/x^2 - 1/x^3, where Q(k)= 1 + (2*k + 1)*x/( 1 - x - 2*x*(1-x)*(k+1)/(2*x*(k+1) + (1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013
a(n) = 6 * A095000(n). - Alois P. Heinz, Jan 17 2025

Extensions

Error in definition corrected Jan 30 2008
More terms from N. J. A. Sloane, Jan 30 2008

A095722 E.g.f.: exp(x)/(1-x)^8.

Original entry on oeis.org

1, 9, 89, 961, 11265, 142601, 1940089, 28245729, 438351041, 7226001865, 126122874201, 2324074591169, 45094140207169, 919088049256521, 19633713260950265, 438708172312264801, 10234490436580101249
Offset: 0

Views

Author

Philippe Deléham, Jul 08 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n) for x = 1, 2, 3, 4, 5, 6, 7 respectively.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^8,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 26 2013 *)
    Table[HypergeometricPFQ[{8, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*8^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+7)! / 7!.
a(n) = 2F0(8,-n;;-1). - Benedict W. J. Irwin, May 27 2016

A095740 E.g.f.: exp(x)/(1-x)^9.

Original entry on oeis.org

1, 10, 109, 1288, 16417, 224686, 3288205, 51263164, 848456353, 14862109042, 274743964621, 5346258202000, 109249238631169, 2339328151461718, 52384307381414317, 1224472783033479556, 29826054965115774145
Offset: 0

Views

Author

Philippe Deléham Jul 09 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n) for x = 1, 2, 3, 4, 5, 6, 7, 8.

Programs

  • Maple
    seq(simplify(hypergeom([9,-n],[],-1)),n=0..30); # Robert Israel, May 27 2016
  • Mathematica
    Table[HypergeometricPFQ[{9, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*9^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+8)!/8!.
a(n) = 2F0(9,-n;;-1). - Benedict W. J. Irwin, May 27 2016
a(n) = ((n^8 + 28*n^7 + 350*n^6 + 2492*n^5 + 10899*n^4 + 29596*n^3 + 48082*n^2 + 42048*n + 14833) * Gamma(n+1,1)*e + n^7 + 28*n^6 + 349*n^5 + 2465*n^4 + 10579*n^3 + 27501*n^2 + 40132*n + 25487) / 40320. - Robert Israel, May 27 2016
Previous Showing 11-13 of 13 results.